

INDIAINX Exchange’s New Trading Architecture

INDIAINX Market Data Interfaces

Manual

Version 1.1

Date: June 20, 2017

INDIAINX Market & Reference Data Interfaces Manual V1.1

2

Strictly for private circulation only. This document must not be circulated to other users

without prior permission of INDIAINX.

INDIAINX Market & Reference Data Interfaces Manual V1.1

3

Contents

1 List of abbreviations .. 8

2 Introduction .. 9

2.1 Purpose of this document ... 10

2.2 Main audience .. 10

2.3 Data feeds ... 10

2.3.1 Reference data interface .. 11

2.3.2 Market data interfaces .. 12

2.4 Interface version number ... 12

2.5 Further reading matter for this topic .. 12

2.6 How to read this document .. 13

3 Differences between the interfaces.. 15

3.1 Distribution sequence for INDIAINX EMDI .. 16

3.2 Distribution sequence for MDI / RDI ... 16

3.3 Choosing between the EMDI and the MDI ... 17

3.4 Choosing between the INDIAINX RDI and INDIAINX RDF ... 18

4 Overview of the INDIAINX Public Interfaces ... 20

4.1 Infrastructure requirements ... 20

4.2 Trading states .. 20

4.2.1 Product State Changes .. 20

4.2.2 Instrument State Changes ... 21

4.3 Overview of the various message types ... 23

4.3.1 RDI ... 23

4.3.2 EMDI/MDI ... 23

4.4 What is not included in these interfaces .. 24

4.5 FIX over FAST ... 25

4.6 Freedom of choice .. 25

4.7 Testing ... 25

4.8 Hours of operation/availability of messages .. 26

5 FIX/FAST-Implementation ... 27

5.1 Structure of Messages .. 27

INDIAINX Market & Reference Data Interfaces Manual V1.1

4

5.2 FAST terminology .. 28

5.2.1 FAST reset message... 28

5.2.2 Presence Map (PMAP) .. 28

5.2.3 Template ID (TID) .. 29

5.2.4 Dictionaries ... 30

5.2.5 Stop bit encoding .. 30

5.2.6 FAST operators .. 30

5.3 Decoding the FAST-message ... 30

5.4 Transfer decoding ... 31

5.5 Composing the Actual FIX-Message .. 31

5.6 New features in FAST version 1.2 ... 31

5.7 Data types ... 32

5.8 FAST version 1.1 compatible templates .. 32

6 Description of a typical trading day .. 34

6.1 Start of day operation ... 34

6.2 Receiving reference data via RDI at start of day ... 34

6.3 Receiving reference data file (RDF) at start of day ... 36

6.4 Build the initial order book ... 36

6.4.1 Build the initial order book with the EMDI ... 36

6.4.2 Build the initial order book with the MDI ... 37

6.5 Update the order book ... 38

6.5.1 Update the order book with the EMDI ... 38

6.5.2 Update the order book with the MDI ... 38

7 Recovery .. 40

7.1 Detecting duplicates and gaps by means of the packet header ... 40

7.2 How to recover data via the respective other service (A or B) ... 41

7.3 Delayed packets .. 42

7.4 Missing packets ... 43

7.4.1 Recovery (EMDI) ... 44

7.4.2 Recovery (MDI) ... 46

8 Various time stamps in INDIAINX and how to use them .. 48

8.1 Time stamps (EMDI) .. 48

INDIAINX Market & Reference Data Interfaces Manual V1.1

5

8.2 Time stamps (MDI) .. 50

9 Important topics with use cases and examples .. 51

9.1 Reference data messages ... 51

9.2 General reference data rules .. 53

9.2.1 General structure of the snapshot cycle ... 53

9.2.2 Counters as part of the market data report message .. 54

9.2.3 Use case 1: Reference data at the start of the reference data service 55

9.2.4 Use case 2: Reference data after intraday addition of complex instruments 55

9.2.5 Use case 3: Reference data after intraday deletion of a complex instrument 56

9.2.6 Use case 4: Reference data on the next business day .. 57

9.2.7 Use case 5: Failover or restart of RDI .. 57

9.2.8 Use case 6: Chronological order of messages for complex instrument creation 58

9.3 General order book rules and mechanics ... 58

9.3.1 Determination of the price sources .. 62

9.3.2 New price level .. 63

9.3.3 Change of a price level .. 64

9.3.4 Overlay .. 64

9.3.5 Deletion of a price level .. 65

9.3.6 Deletion of multiple price levels from a given price level onwards 66

9.3.7 Deletion of multiple price levels up to a given price level .. 66

9.4 Trade Volume Reporting (EMDI) ... 68

9.4.1 Use case 1: Direct match of simple instruments .. 68

9.4.2 Use case 2: Direct match of complex instruments ... 69

9.4.3 Use case 4: Complex versus simple/complex match .. 71

9.4.4 Use case 5: Opening auction ... 71

9.5 Trade Volume Reporting (MDI) ... 72

9.6 Failure of the market data feed/ matching engine ... 73

9.6.1 Normal processing .. 73

9.6.2 Market data feed fail-over (EMDI) .. 74

9.6.3 Market data feed fail-over (MDI) .. 75

9.6.4 Market data feed restart (EMDI) .. 76

9.6.5 Market data feed restart (MDI) .. 77

INDIAINX Market & Reference Data Interfaces Manual V1.1

6

9.6.6 Failure of the matching engine ... 77

9.7 Trading states for a sample business day ... 78

9.7.1 Start-Of-Day .. 78

9.7.2 Pre-Trading .. 79

9.7.3 Trading .. 79

9.7.4 Continuous Trading ... 80

9.7.5 Intraday Expiry .. 80

9.7.6 Closing ... 80

9.7.7 Post Closing ... 81

9.7.8 End-Of-Day .. 81

10 Fine tuning client applications .. 82

10.1 Buffer size ... 82

10.2 Packet and message processing .. 82

10.3 Application level .. 83

10.3.1 Discarding duplicate packets within the live-live environment .. 83

10.3.2 Order book processing .. 83

10.3.3 Optimal processing of desired products (EMDI) ... 84

11 Detailed data feed description and layout ... 85

11.1 Service messages .. 85

11.1.1 FAST reset message... 85

11.1.2 Packet header (EMDI) ... 85

11.1.3 Packet header (MDI / RDI) .. 87

11.1.4 Functional beacon message .. 87

11.1.5 Technical heartbeat message ... 88

11.1.6 Market data report message .. 88

11.2 Reference data messages ... 90

11.2.1 Product snapshot message ... 90

11.2.2 Instrument snapshot message .. 96

11.2.3 Instrument incremental message ... 102

11.3 Market data messages .. 103

11.3.1 Depth snapshot message .. 103

11.3.2 Depth incremental message ... 108

INDIAINX Market & Reference Data Interfaces Manual V1.1

7

11.3.3 Product state change message ... 111

11.3.4 Mass instrument state change message ... 112

11.3.5 Instrument state change message .. 115

11.3.6 Complex instrument update message .. 116

11.3.7 Index change message .. 119

Data files ... 119

11.3.8 Reference data from file (INDIAINX RDF).. 120

11.3.9 File name format of the reference data files .. 120

11.3.10 Reference data file on the next business day ... 121

11.3.11 Reference data file after a failover or restart of INDIAINX RDI 121

11.3.12 What receiving applications need to do ... 122

12 Multicast addresses .. 123

12.1 Reference data snapshot feed .. 123

12.2 Reference data incremental feed ... 123

13 FAST templates ... 124

14 Appendix ... 125

14.1 Example for a XML FAST template ... 125

14.2 Example for determination of the price source .. 126

14.2.1 Fully implied (example for 9.3.1, Determination of the price sources) 126

14.2.2 Fully outright on level 1 (example for 9.3.1, Determination of the price sources) 126

14.2.3 Partially implied (example for 9.3.1, Determination of the price sources) 127

14.2.4 Several fully implied orders at Best Market (example for 9.3, General order book rules

and mechanics) ... 128

14.3 FIXML mapping table .. 130

14.4 Index Code and Mapping Table .. 133

15 Change log ... 134

15.1 Changes compared to version 1.3.3 .. Error! Bookmark not defined.

15.2 Changes compared to version 1.3.4 .. Error! Bookmark not defined.

15.3 Changes compared to version 1.3.5 .. Error! Bookmark not defined.

INDIAINX Market & Reference Data Interfaces Manual V1.1

8

Part I

1 List of abbreviations

The table below shows all the abbreviations and definitions used in this document.

EMDI Enhanced Market Data Interface

MDI Market Data Interface

RDI Reference Data Interface

RDF Reference Data File

ETI Enhanced Transaction Interface

FAST

FIX Adapted for STreaming (FAST Protocol) (FAST ProtocolSM). FIX Adapted for
STreaming is a standard which has been developed by the Data Representation
and Transport Subgroup of FPLs Market Data Optimization Working Group.
FAST uses proven data redundancy reductions that leverage knowledge about
data content and data formats.

FIX
Financial Information eXchange. The Financial Information eXchange (“FIX”)
Protocol is a series of messaging specifications for the electronic
communication of trade-related messages.

In-band Incremental and snapshots are delivered in the same channel.

Match event Part of the matching event having a unique match price.

Out-of-band Incremental and snapshots are delivered on different channels.

Simple
instruments

Single leg outright contracts

Complex
instruments

Any combination of single leg outright contracts, e.g. Future Time Spreads.

Live-live
concept

The concept whereby data is disseminated simultaneously via two separate
channels called “Service A” and “Service B”.

OTC Over the Counter

PMAP Presence Map

ToB Top of Book

INDIAINX Market & Reference Data Interfaces Manual V1.1

9

2 Introduction

INDIAINX offers public market and reference data via three interfaces as part of the INDIAINX

Exchange’s new trading architecture. All three interfaces distribute information via UDP multicast;

following FIX 5.0 SP2 semantics and are FAST 1.21 encoded. If any messages are lost, complete recovery

is possible because every message is published on two identical services (A and B) with different

multicast addresses (live-live concept). In the unlikely case that a message is lost on both services,

participants can take advantage of the respective snapshot message and rebuild the order book.

There are two types of Market Data Interface:

 The Enhanced Market Data Interface (EMDI): This interface provides un-netted market

data. The updates of the order book are delivered for all order book changes up to a

given level; all on-exchange trades are reported individually.

 The Market Data Interface (MDI): This interface provides netted market data. The

updates of the order book are sent at regular intervals; they are not provided for

every order book change and are sent significantly less frequently than the EMDI. On-

exchange trades are not reported individually but statistical information (daily high/low

price, last trade price and quantity) is provided instead.

The EMDI and MDI provide the following information to the participant:

 Price level aggregated order book depth and on-exchange trade statistics.

 Product and instrument states.

 Information on newly created/deleted complex instruments.

Reference data is sent with:

 The Reference Data Interface (RDI): This interface provides reference data for

instruments that are available for trading on the INDIAINX Exchange’s new trading

architecture. The reference data is delivered on a product and instrument level. Every

tradable object is referenced by a unique identifier, for this reason the reference data

information is absolutely essential for any trading application. The interface is currently

unavailable and would be made available soon.

 The Reference Data File (RDF): Reference data is delivered as a start-of-day file. The file

is available on the INDIAINX website. The interface is currently unavailable and would

be made available soon.

__
1Fast Templates are provided as well.

INDIAINX Market & Reference Data Interfaces Manual V1.1

10

2.1 Purpose of this document

The purpose of this document is to provide guidance for programmers during development of

applications that read the INDIAINX Market & Reference Data Interfaces.

It covers a complete reference for the three multicast based public interfaces, describes the general

business behavior and provides concepts for the implementation.

The most recent version is available at: www.INDIAINX.com/nta.aspx

2.2 Main audience

The target audience of this interface specification is experienced software developers support staff that

may be involved in development/support activities for the INDIAINX Market & Reference Data

Interfaces.

Prior knowledge of developing for a capital market is beneficial but not a prerequisite. Knowledge in a

programming language is expected. Programmers who have no experience in a market data

interface environment can gain a basic understanding of the feed behavior by reading Part II (How

to guide). This manual does not attempt to cover basic knowledge of programming techniques and

software development.

2.3 Data feeds

All interfaces deliver public reference and market data in the form of snapshots and incremental as can

be seen in Figure 1. The two public market data interfaces, the EMDI for a high bandwidth network and

the MDI for a low bandwidth network, disseminate information across the INDIAINX network to the

receiving application. The RDI is considered for participants with a high bandwidth network while the

RDF should be used if only a low bandwidth network is available.

INDIAINX Market & Reference Data Interfaces Manual V1.1

11

Figure 1: Reference data and Market data interfaces

2.3.1 Reference data interface

Public reference data delivered by RDI contains the technical configuration, e.g. Multicast address and

port combinations for both market data interfaces for all products and instruments.

Multicast addresses and port information do not change during trading hours.

The reference data snapshot feed contains two message types: Constant number of snapshots and a

variable number of incremental.

The reference data incremental feed delivers reference information about intraday created and deleted

complex instruments.

INDIAINX Market & Reference Data Interfaces Manual V1.1

12

2.3.2 Market data interfaces

The EMDI and the MDI disseminate public market data information in the form of incremental (event

driven) and snapshots (time driven).

The market data snapshot feed can be used to recover lost market data or build up the current order

book. Receiving applications are not expected to be permanently subscribed to this feed.

The market data incremental feed should be subscribed throughout the trading day for receiving order

book updates. All incoming messages should be applied to the copy of the order book maintained by the

member applications in order to have the latest information.

2.4 Interface version number

Each of the interfaces described in this manual has a version number. The version numbers are also

listed within the FAST XML templates. This manual relates to the following interface version numbers:

 EMDI: 500.002.860-500002860.20

 MDI: 500.002.860-500002860.23

 RDI:

The version numbers for the interfaces are available at the beginning of the FAST XML files.

2.5 Further reading matter for this topic

This document is designed as an independent learning and reference manual. However, for background

information related to network connectivity, FAST/FIX messages or trading related information

(functional), further documents are recommended.

The documents listed below provide useful information.

FAST- and FIX-related documents:

 FAST specification documents: Explains all FAST rules in detail. FAST 1.2 is the summary

of the FAST 1.1 specifications plus the extension Proposal.

www.fixprotocol.org > fastspec

 FIX specification documents: FIX-messages and FIX-tags

www.fixprotocol.org > Specifications

INDIAINX Market & Reference Data Interfaces Manual V1.1

13

 FIX-Tags: Specifies all FIX-Tags

www.fixprotocol.org > FIXimate3.0

2.6 How to read this document

This manual covers the EMDI and MDI as well as the RDI. Differences in functionality between the EMDI

and the MDI are described in separate sub sections, while being represented by different text colors:

(EMDI) and (MDI).

For example, section 7.4.2, Recovery (MDI), refers to the “netted” MDI only. Participants who are

interested in the “un-netted” EMDI can ignore this sub chapter. This document consists of three parts:

 Part I (General Overview) introduces the interface for beginners.

 Part II (How to guide) provides methods and hands-on guidance.

 Part III (Reference) is a comprehensive reference with details on various message

layouts in table format. A typical table would be the following:

 Delivered on: reference data snapshot feed

Tag Field Name Req’d Data Type Description

35 MsgType Y string User Defined
Message

Value Description

0 Beacon

<Group Name> (Optional) group starts

<Sequence Name> Sequence start

…. ….. …. …. ….

…. …. …. …. ….

<Group Name> (Optional) group starts

<Sequence Name> Sequence start

Table 2: Typical FIX message description

Interpreting the fields above:

– Delivered on: Specifies the feed which delivers the specific message. A message can be delivered on

more than one feed.

INDIAINX Market & Reference Data Interfaces Manual V1.1

14

– Tag: Describes the FIX Tags

– Field Name: Describes the FIX-name.

– Req’d: Describes whether or not the field is included within the message after FAST-decoding, purely

from the FIX-point of view. This does not refer to a FAST-rule, e.g. Operators or Presence Map (PMAP)

in FAST.

– Data Type: FAST data type. This information is also provided in the XML FAST templates.

– Description: This column contains an explanation of the FIX-field and its “valid values” in table format

for this particular message.

– Group Name, Sequence Name: The names correspond with the groups and sequences defined in the

FAST XML templates.

Cross references to other chapters within this document and the glossary are provided in blue color.

Example: More information is provided in section 9.1, Reference data messages.

In this document, the terms “incremental” and “snapshots” are used in various contexts. Within this

document “incremental” and “snapshots” refer either to messages of the market data feed or to

messages of the reference data feed. The actual meaning can be inferred from the context.

Note: Important statements made in this manual are highlighted with a shadow box.

INDIAINX Market & Reference Data Interfaces Manual V1.1

15

3 Differences between the interfaces

A feed is a message flow of logically grouped messages, e.g. The depth incremental and product state

change messages for a particular product are grouped together within the incremental feed of EMDI.

The following diagram illustrates the available feeds for the three multicast based public interfaces:

Figure 2: Overview of the three interfaces

The RDI is published on exactly one snapshot channel, indicated by (A1
S) and one incremental channel

(A1
I). The EMDI has multiple channels that have either snapshots (A1

S) to (An
S) and multiple incremental

channels (A1
I) to (An

I). The MDI has the snapshots and incremental combined over multiple channels

(A1
S,I) to (An

S,I).

The snapshot and incremental messages for the EMDI are delivered via separate feeds (out-of band) and

need to be synchronized. Each feed consists of several channels, each of which delivers the information

for a group of products.

Several partitions, each with a unique SenderCompID (49), may contribute to the same multicast

address as shown in Figure 20. The SenderCompID (49) is unique across all partitions. However, it

should not be relied upon as under unlikely but possible conditions on the exchange this is not true.

INDIAINX Market & Reference Data Interfaces Manual V1.1

16

In contrast to the EMDI, the snapshot and incremental messages for the MDI are sent on one feed only

(in-band), therefore there is no need to synchronize both messages. The feed is also divided into several

channels grouped on product basis.

The snapshot and incremental feed for the RDI are delivered via separate channels (out-of band) and

need to be synchronized. In contrast to the order book information, the snapshot and incremental

feeds are not divided into further channels.

All feeds are sent on two different multicast addresses via different physical connections (Service A and

B). Service A and Service B are identical in terms of the information provided, i.e. The packet contents,

sequence numbers and sequence in which packets are sent are the same. This is called “live-live”

concept. Product groups are distributed across several partitions on the INDIAINX backend side. Service

A and Service B cannot be published at exactly the same time.

3.1 Distribution sequence for INDIAINX EMDI

The rule for the distribution sequence across partitions is as follows:

The above rule is applied by using the field PartitionID (5948). It is available in the product snapshot

message, in reference data file and in the packet header and contains the number of the partition for

the product of interest. The PartitionID (5948) never changes intraday.

Example: A PartitionID = 8 indicates an even partition and therefore Service A is published before

Service B.

The time difference between publication of Service A and B is currently not known; lab testing indicates

an average time difference of about 10 - 15 µs; the cable length for both Service A and Service B within

the co-location is the same, i.e. both services have the same propagation delay.

The multicast addresses for both of these services are disseminated in the product reference

information. Due to the inherently unreliable nature of the UDP protocol, data packets may be lost in

the transmission network. Therefore members are advised to join both services to reduce the

probability of data loss.

3.2 Distribution sequence for MDI / RDI

The rule for the distribution sequence across partitions is as follows:

Even partitions: Publish on Service A first, then on Service B.

Odd partitions: Publish on Service B first, then on Service A.

Even and odd partitions: Publish on Service A first, then on Service B

INDIAINX Market & Reference Data Interfaces Manual V1.1

17

Example: The PartitionID (5948) for MDI and RDI is not available in the packet header but in the product

snapshot message. However, the PartitionID (5948) doesn’t need to be considered because Service A is

always published first regardless of the partition.

3.3 Choosing between the EMDI and the MDI

Both types of interface, un-netted and netted, provide market information via multicast using a

price level aggregated order book (as opposed to, for example, order-by-order feeds) but they have

different bandwidth requirements and service levels.

 The Enhanced Market Data Interface (un-netted) disseminates every order book

change up to the configured depth and all on-exchange trades without netting. This

interface is designed for participants that rely on low-latency order book updates and

data completeness. The un-netted market data is partitioned over several channels;

each channel provides information about a group of similar products. As the market

becomes busier, the number of messages (and therefore bandwidth usage) increases.

 The Market Data Interface (netted) has a lower bandwidth requirement compared to

the un-netted version. This interface is designed for participants who do not need to see

every order book update, this has the advantage of keeping the infrastructure costs low.

Snapshot and incremental updates are sent via the same IP multicast address and port

combination.

 This interface aggregates the order book changes over a specified time interval.

Currently, INDIAINX plans to provide market data for benchmark products with a netting

interval of 0.47 sec and depth of 5. For all other products, a netting interval of 0.67 sec

is envisaged. This interface has less price levels than the EMDI. Furthermore, only

statistical information is provided for on-exchange trades as well as the price and

quantity of the last on-exchange trade in the netting interval.

The following table shows the main differences between the EMDI and the MDI:

Area EMDI MDI

In-band/Out-of- band
delivery

Incremental and snapshots are
delivered via different channels,
i.e. out-of-band delivery
LastMsgSeqNumProcessed
In the snapshot feed provides a
link between incremental and
snapshot feed, as it carries the
sequence number of the last
message sent on the
incremental feed. Snapshots are

Incremental and snapshots are
delivered on the same channel,
i.e. in-band delivery.
Snapshots might contain new
information.
A flag (RefreshIndicator) within
the snapshot indicates whether
it has to be applied or not.
LastMsgSeqNumProcessed is not
used.

INDIAINX Market & Reference Data Interfaces Manual V1.1

18

needed only for start-
up/recovery.

Sequence numbers on
message level

Messages on the market data
incremental feed have their
own sequence number range
per product; MsgSeqNum’s
exist on the depth incremental
feed only as shown in Table 13.

Messages on the combined
market data incremental +
snapshot feed have one
sequence number range per
product as shown in Table 14

Trade Volume Reporting Trade Volume Reporting is
provided. Each on-exchange
trade is reported individually.

Only statistical information
(daily high/low price and total
traded quantity) and last trade
information is provided.

Packet header A Performance Indicator4 is
provided for incremental within
the Packet Header as shown in
figure 21

A Performance Indicator does
not exist as shown in figure 22

Functional beacon message A functional beacon message
on a product level including the
last valid MsgSeqNum is sent if
no other message has been
sent for a configured time
period.

Snapshots act as functional
beacon message, hence no
separate functional beacon
messages are provided.

Table 3: Main differences between the EMDI and the MDI

3.4 Choosing between the INDIAINX RDI and INDIAINX RDF

The Reference data is provided via the RDI and in file form as compressed Reference Data Files

(RDF) in FIXML-layout, updated approximately every 5 minutes via the Common Report Engine 5(CRE).

The initial reference data file generated at start-of-day contains the “reference data snapshots”

available from the previous day. During the actual trading multiple incremental files are created as

complex instruments are added and deleted. New complex instruments predefined by the exchange are

also sent in incremental files before the start of the actual trading.

Please note that the intraday changes to reference data are also published in form of the complex

instrument update messages via the market data incremental feed of the EMDI and the market data

feed of the MDI. During normal operations participants do not need to listen to the incremental feed of

the RDI, because the complex instrument update6 can be received on the market data feed.

Furthermore, market data for new complex instruments is never provided ahead of their reference data

on EMDI or MDI but may come ahead of its publication via RDI.

INDIAINX Market & Reference Data Interfaces Manual V1.1

19

Participants have the choice between the two different reference data sources. However, it is assumed

that bandwidth conscious users will use INDIAINX RDF for start-of-day processing and intraday re-starts.

The reference data file is provided once the system is available (product state “Start-Of-Day”).

The following table shows the main difference between the INDIAINX reference data messages and

the reference data from File:

Area RDI: Message based RDF: File based

Reference Data High bandwidth users can use
the multicast based Reference
Data Interface.

Low bandwidth users can use
Start-Of-Day Reference Data
Files and apply each Intraday
Reference Data File as they
become available.
A late starting application can
always retrieve the latest picture
of the reference data by this
method.

Table 4: Differences between the RDI and the RDF

__

4 Time between arrival of an incoming order/quote transaction on the INDIAINX matching engine and send time of the

corresponding outgoing market data
5 For more information please see the "Common Report Engine User Guide"
6 The layout is the same as on the instrument incremental message except for the fields SecurityStatus (965) and SenderCompID

(49)

INDIAINX Market & Reference Data Interfaces Manual V1.1

20

4 Overview of the INDIAINX Public Interfaces

This chapter describes the public market data provided by the market- and reference data interfaces.

4.1 Infrastructure requirements

The INDIAINX market and reference data interfaces disseminate market and reference data over the

INDIAINX multicast network. A router which is capable of handling IP multicast is required for accessing

this inter- face. The multicast management protocol is IGMPv2. When utilizing IGMPv3, the IGMPv2

compatibility mode must be enabled.

4.2 Trading states

State changes are disseminated over both the EMDI and the MDI market data feeds. Trading state

information is not communicated over the Enhanced Transaction Interface (ETI) or FIX interface.

The EMDI and the MDI market data feeds follow the FIX protocol for the publication of trading

state information. The INDIAINX product and instrument states are displayed by these interfaces as

shown in the following tables.

Section 9.8, Trading states for a sample business day illustrates state messages for a typical business

day. The hours of operations for the INDIAINX system are provided in Section 4.8, Hours of

operation/availability of messages.

4.2.1 Product State Changes

The product state is published with a product state change message (FIX TradingSessionStatus, MsgType

= h). In this message, the product state can normally be found in the field TradingSessionSubID (625).

Only for quiescent product states, the field TradingSessionID (336) must be evaluated additionally to

determine the actual product state.

Product State Change Message

Product State FIX TradingSessionID (336)

FIX TradingSessionSubID
(625)

FIX TradeSesStatus
(340)

Start of Day 3 = Morning 9 = Quiescent 3 = Closed

Pre-Trading 3 = Morning 1 = Pre-Trading 2 = Open

Trading 1 = Day 3 = Trading 2 = Open

Closing 1 = Day 4 = Closing 2 = Open

Post-Trading 5 = Evening 5 = Post-Trading 2 = Open

Post- Closing 5 = Evening 6 = Post-Closing 2 = Open

End of Day 5 = Evening 9 = Quiescent 3 = Closed

INDIAINX Market & Reference Data Interfaces Manual V1.1

21

Halt 1 = Day 9 = Quiescent 1 = Halted

Holiday 7 = Holiday 9 = Quiescent 3 = Closed

Table 5: Product states

A Halt state is additionally indicated by the FIX field TradSesStatus (340) containing the value 1 = Halted.

4.2.2 Instrument State Changes

The instrument state is published with an instrument state change message (FIX SecurityStatus,

MsgType= f) in case of a single instrument, or with a (FIX SecurityMassStatus, MsgType = CO) message

in case that all or most of the instruments of a product and of a specific instrument type7 change their

state.

 In the instrument state change message (FIX SecurityStatus, MsgType= f), the

instrument state can be found directly in the field SecurityTradingStatus (326).

 In the mass instrument state change message (FIX SecurityMassStatus, MsgType = CO),

the instrument state can be found in the field SecurityMassTradingStatus (1679).

This message may contain an exception list of instruments that have a different

instrument state. The exception list contains the instrument state in the field

SecurityTradingStatus (326) for each of these instruments.

Instrument State instrument state change message /
mass instrument state change message

 FIX SecurityTradingStatus (326) /
FIX SecurityMassTradingStatus (1679)

Closed 200 = Closed

Restricted 201 = Restricted

Book 202 = Book

Continuous 203 = Continuous

Opening Auction 204 = Opening Auction

Opening Auction Freeze 205 = Opening Auction Freeze

Intraday Auction 206 = Intraday Auction

Intraday Auction Freeze 207 = Intraday Auction Freeze

Table 6: Instrument states

The field FastMarketIndicator (28828) is also contained in the mass instrument state change message;

each instrument state message also contains the information about whether the product that the

instrument belongs to is in a Fast Market state. This implies that a mass instrument state change

INDIAINX Market & Reference Data Interfaces Manual V1.1

22

message is sent when a product is set to Fast Market (or back) without a change in the instrument

states.

The status of the instrument (as opposed to the instrument state) distinguishes active and published

instruments and is contained in the field SecurityStatus (965).

7 Instrument types distinguish simple instruments (option series, futures contracts) and various types of complex instruments.

INDIAINX Market & Reference Data Interfaces Manual V1.1

23

4.3 Overview of the various message types

The various message types can be divided into "Service Messages" and "Data Messages".

4.3.1 RDI

Service messages:

 Technical heartbeat message is sent out periodically by the INDIAINX system on every

multicast address and on a specific port assigned for the technical heartbeat; it consists

of a FAST reset message only. The purpose of the heartbeat message is network related

only8 .

Data messages:

 Market data report message flags the start and end of reference data. Each message is

flagged by a start/stop event identifier.

 Product snapshot message contains product specific reference data.

 Instrument snapshot message contains a snapshot of instrument specific reference data

and also contains the reference data related to complex instruments that existed at

start-of-day.

 Instrument incremental message used with intraday added or deleted complex

instruments. Identical messages are also sent on the market data incremental feed of

the INDIAINX EMDI as well as on the market data feed of the INDIAINX MDI.

4.3.2 EMDI/MDI

Service messages:

 Technical heartbeat message is sent out on all multicast addresses of the EMDI/MDI.

The description is the same as for RDI.

 Functional beacon message (EMDI) contains the last valid MsgSeqNum of each product

and is only sent on the market data incremental feed when there is no activity in a

product for a certain amount of time. No functional beacons are sent for the MDI

because the snapshots act as a functional beacon.

8 It is used to keep spanning tree alive

INDIAINX Market & Reference Data Interfaces Manual V1.1

24

Data messages:

 Depth snapshot message is used to send a snapshot of all price levels of the order book

and statistical information about on-exchange trades. This message can be used

whenever the order book needs to be rebuilt.

 Depth incremental message is used to receive updates on the initial order book.

 Product state change message is used to publish the state of the INDIAINX products.

 Mass instrument state change message provides the state information for all

instruments of a product. This message can publish different states for instruments of

the same product, e.g. In case of volatility interruption the front month could be in a

different state than the back month.

 Instrument state change message provides state information for a single instrument.

 Complex instrument update message is used to publish new or deleted complex

instruments. This message is sent via the market data incremental feed of the INDIAINX

EMDI and the market data feed of the MDI. A message is sent for each newly created

complex instrument.

 Index Change Message is used to publish the indices current values and also day’s high,

low open and close values. This message is sent via the market data incremental feed of

the INDIAINX EMDI and the market data feed of the MDI. The message is sent

periodically at a defined interval.

 A detailed description of the message types listed above is given in section 11, detailed

data feed description and layout.

4.4 What is not included in these interfaces

The following information is not provided via the new interfaces:

 For auctions, the best bid/ask prices are disseminated at price level 1 without a

quantity. If a potential auction price is calculated, it is also sent without the quantity.

Order book depths are not delivered during auctions, only top of book information is

disseminated.

INDIAINX Market & Reference Data Interfaces Manual V1.1

25

 Market Supervision News is not provided. This information is available via the INDIAINX

ETI in recoverable form.

 In case of derivatives contracts, the prices for underlying are not provided. These prices

will be available in multicast form in the multicast stream of the respective segment.

 Retransmission functionality is not provided, but recovery is possible from the

respective other service (A or B). In case a message is lost a snapshot can be used to

rebuild the order book.

 Implied prices are only sent for Best Market, they are not sent for the order book depth

except for top of book.

4.5 FIX over FAST

FIX messages are sent out in FAST 1.2 encoded format. The receiving software decodes the FAST

messages according to the FAST 1.2 rules.

After the decoding process, the actual FIX message can be built by applying the FIX structure to the

decoded message. The detailed process is shown in Part II, FIX/FAST-Implementation.

Participants need a standard FAST template based decoder in order to be able to use the EMDI, MDI and

RDI. Alternatively participants can use their own FAST decoder implementation.

4.6 Freedom of choice

INDIAINX does not need to provide any software for accessing the services offered. The INDIAINX

market and reference data interfaces can be accessed using any platform capable of receiving multicast

data feeds. Participants can use any operating system, compiler version or programming language in

order to develop or use specific third party applications that are tailored to their requirements.

4.7 Testing

It is recommended to test the functionality application logic sufficiently in a simulation environment.

Receiving applications must be able to cope appropriately with a variety of INDIAINX service fail-over

scenarios.

Note: FAST 1.2 templates and FAST 1.1 compatible templates are provided.

INDIAINX Market & Reference Data Interfaces Manual V1.1

26

4.8 Hours of operation/availability of messages

The product state “Pre-Trading” (TradingSessionSubID (625) = 1) for many of the INDIAINX products

begins at 6:30 IST.

“Post-Trading” (TradingSessionSubID (625) = 5) for some INDIAINX products lasts until 22:30 CET.

 INDIAINX is available from approximately 6:30 IST. It is recommended to start

applications between 6:30 IST and 7:00 IST.

 Market data messages are sent from the time a product changes to the state “Start-Of-

Day” and stops when it changes to the state “End-Of-Day”. During that period depth

snapshots are sent.

 The reference data is independent to any one product state so it has its own schedule.

 Receiving applications are expected to stay connected from product state “Start-Of-

Day” until pro- duct state “End-Of-Day”.

The following table provides further details about the availability of messages per instrument state:

State Market Data Orderbook Market Data State Info

Continuous Yes Yes

Auction Yes Yes

Freeze Yes Yes

Book No Yes

Restricted No Yes

Closed No Yes

Table 7: Availability of messages per instrument state

INDIAINX Market & Reference Data Interfaces Manual V1.1

27

Part II

How to guide

5 FIX/FAST-Implementation

This chapter describes the message structure for the three interfaces. It also provides the basic FAST

rules used by the interface and describes the basic steps from receiving a FAST datagram, decoding it

and building FIX-messages out of it.

The FAST 1.2 specification is provided as an extension to the FAST 1.1 specification. The documents can

be found under the following links:

FAST Specification (Version 1.1)

www.fixprotocol.org > Technical Specifications > FAST Protocol > FAST Protocol Specifications > FAST

Specification Version 1.1

FAST version 1.2 Extension Proposal

www.fixprotocol.org > Technical Specifications > FAST Protocol > FAST Protocol Specifications > FAST

Extension Version 1.2

5.1 Structure of Messages

The three public interfaces disseminate data in UDP datagram in network byte order also known as big

endian byte order. This includes vector encoded numbers. A UDP datagram has the following structure:

Figure 3: Structure of a UDP datagram

 The UDP datagram starts with the packet header message as shown in section 11.1.2.

 Followed by a FAST reset message.

 Followed by the actual message (Message1).

 Possibly followed by one or more messages (Message2 -Messagen).

INDIAINX Market & Reference Data Interfaces Manual V1.1

28

Each message shown in the picture above has the following sub structure:

 PMAP (Presence Map).

 TID (Template ID).

 Data Part.

This is shown in the following diagram:

Figure 4: Structure of consecutive messages within one datagram

One UDP datagram contains one or more FAST encoded FIX 5.0 SP2 messages. The UDP protocol adds a

28 byte header to every packet (20 byte IP header plus 8 byte UDP protocol header). Due to the

unreliable nature of UDP, every UDP datagram is self contained; there is no dependency across

datagram.

5.2 FAST terminology

5.2.1 FAST reset message

The INDIAINX Market Data Interfaces use global dictionary scope for FAST operators 9. All operators

share the same dictionary regardless of the template and application type. The FAST reset message is

inserted at the start of every datagram to explicitly reset all the dictionaries.

5.2.2 Presence Map (PMAP)

The presence map is a bit combination indicating the presence or aINDIAINXnce of a field in the message

body, one bit in the PMAP for each field that uses a PMAP bit according to the FAST type. The

allocation of a bit for a field in the presence map is governed by the FAST field encoding rules.

9 The dictionary scope should always be derived from the template definition.

INDIAINX Market & Reference Data Interfaces Manual V1.1

29

5.2.3 Template ID (TID)

The template identifier is represented by a number (integer) and points to a specific FAST template

which describes the layout and characteristics of the message to be decoded. The FAST XML files are

provided in section 13, FAST templates.

FAST uses templates to reduce redundancies within a message by using the following methods:

 The order of fields within the FAST message is fixed, so the field meaning is defined by

its position in the message and there is no need to transfer the field tag to describe the

field value.

 The templates specify the order and occurrence of message fields like type, presence

and operators.

The following list contains the message types and their corresponding template identifiers used with the

three INDIAINX interfaces:

Message TID RDI TID EMDI TID MDI

Functional Beacon 109

Packet header for RDI /
EMDI / MDI

114 116 122

FAST Reset Message 120 120 120

MarketDataReport 125

ProductSnapshot 122

InstrumentSnapshot 123

InstrumentIncremental 121

ComplexInstrumentUpdate 124 105

DepthSnapshot 93 101

DepthIncremental 94 102

ProductStateChange 97 108

MassInstrumentStateChange 99 104

InstrumentStateChange 98 103

IndexChange 50 51

Table 8: Template identifiers for RDI/EMDI/MDI

Note: The template id for the packet header will increase in future releases and can be used to

identify the software release.

Example: The TID=116 indicates the packet header for MDI in the current release. In the next

release the TID for the packet header would increase to the next available integer, i.e. TID=117.

INDIAINX Market & Reference Data Interfaces Manual V1.1

30

5.2.4 Dictionaries

A dictionary is a cache in which previous values are stored. FAST operators (-> 5.2.6) make use of the

previous values.

5.2.5 Stop bit encoding

Most FAST fields are stop bit encoded; each byte consists of seven data bits for data transfer and a stop

bit to indicate the end of a field value. An exception from this rule is Byte Vectors as they are used in

the packet header of EMDI/MDI/RDI.

5.2.6 FAST operators

Field operators are used to remove redundancies in the data values. Message templates are the

metadata for the message and are provided earlier. When the messages arrive, the receiving

application has complete knowledge of the message layout via the template definition; it is able to

determine the field values of the incoming message.

The following FAST operators are used in INDIAINX EMDI/MDI/RDI:

 delta.

 copy.

 constant.

 default.

 increment.

For more information on the new FAST 1.2 features please refer to:

www.fixprotocol.org > Technical Specifications > FAST Protocol > FAST Protocol Specifications > FAST

Extension Version 1.2.

5.3 Decoding the FAST-message

The FAST messages need to be decoded by means of the FAST templates. The FAST templates provide

all necessary information to decode a message such as data types (e.g. uInt32), field names (e.g.

Mistype), FIX tags (e.g. 35) And FAST operators (e.g. Increment). The FAST templates also contain

information about repeating groups (sequences).

INDIAINX Market & Reference Data Interfaces Manual V1.1

31

A typical example for a XML FAST template with a repeating group is shown in figure 23 of section 14.1,

Example for a XML FAST template.

5.4 Transfer decoding

Transfer decoding describes the process of how the fields are decoded from the FAST format. For

further information, please refer to section 10 of the FAST Specification Version 1.1. Transfer encoding

describes the opposite process.

5.5 Composing the Actual FIX-Message

A typical FAST decoder would not deliver FIX messages after the decoding process. In order to compose

FIX messages, applications need to apply additional rules.

The sequence of FIX-fields after composing the FIX-message on participant’s side is not governed by the

FIX-layout of the messages, i.e. the fields names of the FIX-message do not need to be in the same

sequence. The FIX message, however, needs to fulfill the minimum requirement:

 BeginString(8) in the Standard Header must be the first tag in the message.

 BodyLength(9) in the Standard Header must be the second tag in the message.

 MsgType(35) in the Standard Header must be the third tag in the message.

 CheckSum(10) Standard Trailer must be the last tag in the message.

5.6 New features in FAST version 1.2

The following new features from the FAST 1.2 protocol are used:

 New Type Definition Syntax: This allows the separation of the “type definitions” from

the “type usage” within template definitions.

 Enumeration: This feature can be used when there is a fixed set of valid values for a

single field.

 Set (multi-value field): This feature can be used when there is a fixed set of valid values

which could be sent together as a bit combination instead of using a repeating group.

INDIAINX Market & Reference Data Interfaces Manual V1.1

32

An example for a set would be the field TradeCondition (277) in the Depth incremental

message. Sets are used to define the valid values for fields.

 Timestamp Data Type: The use of this feature allows native support of time stamp

fields which becomes increasingly important for the INDIAINX market data interface. A

time stamp is an integer that represents a number of time units since an epoch.

5.7 Data types

The INDIAINX implementation of FAST utilizes the following FAST data types:

 Decimal

 Length

 String

 uInt32/uInt64

 Byte vector

 Set

 Enum

 Timestamp

5.8 FAST version 1.1 compatible templates

Participants who choose not to upgrade their FAST 1.2 decoders can use FAST 1.1 compatible files

offered by INDIAINX. The following needs to be considered:

 Enumerations: As described in the previous chapter enumerations have a list of codes.

Participants receive an integer but not the description (meaning) of the integer. Since

FAST 1.1 does not support enumerations this description of codes needs to be taken

from the valid values provided in the FIX tables, chapter 11, Detailed data feed

description and layout.

 Sets: Similar to enumerations, however, participants receive a bitmap and multiple

items from the list. The items need to be taken from the valid values provided in the FIX

tables, chapter 11; Detailed data feed description and layout.

The FAST version 1.2 Extension Proposal available at www.fixprotocol.org > fast spec describes how the

encoded field (wire format) value looks.

INDIAINX Market & Reference Data Interfaces Manual V1.1

33

Example for enumeration: TradingSessionID (336) can have one of the following values as defined in the

FAST 1.2 XML files:

<define name="TradingSessionID">

<enum>

 <element name="1" id="Day"/>

 <element name="3" id="Morning"/>

 <element name="5" id="Evening"/>

 <element name="7" id="Holiday"/>

 <copy/>

</enum>

</define>

The wire format of the values 1, 3, 5, 7 is 0, 1, 2, 3, i.e. each value is represented by an index.

Enumerations are not defined in the FAST 1.1 XML files. When the decoder receives a 3 he needs to

know that it means “Holiday”.

Example for set: TradeCondition (277) can have one or more values as defined in the FAST 1.2 XML

files:

<define name="TradeConditionSet">

<set>

 <element name="U" id="ExchangeLast"/>

 <element name="R" id="OpeningPrice"/>

 <element name="AX" id="HighPrice"/>

 <element name="AY" id="LowPrice"/>

 <element name="AJ" id="OfficialClosingPrice"/>

 <element name="AW" id="LastAuctionPrice"/> <element name="k" id="OutOfSequenceETH"/>

<element name="AN" id="PreviousClose"/>

</set>

The wire format of the values U, R, AX, AY, AJ, AW, k is 1, 2, 4, 8, 16, 32, 64 and 128 i.e. each value is

represented by a different bit. The values can be added together to form combinations of the values. If

U, AX is sent then 1 + 4 = 5 are the encoded field values.

Sets are not defined in the FAST 1.1 XML files. When the decoder receives a 5 he needs to know that it is

a combination of 1 and 4 which is “ExchangeLast” and “HighPrice”.

INDIAINX Market & Reference Data Interfaces Manual V1.1

34

6 Description of a typical trading day

This chapter describes a typical trading day, from the start until the end of trading; the following steps

need to be taken to prepare for and to receive market data:

Figure 5: Typical trading day

6.1 Start of day operation

Before processing any market data, receiving applications need to retrieve technical and functional

information via the INDIAINX RDI. Alternatively, reference data can be received in file format (Reference

Data from File). A detailed description of the reference data feeds and messages is provided in section

9.1, Reference data messages.

At start-up, reference data must be processed to create the initial order book baseline.

6.2 Receiving reference data via RDI at start of day

At the start of the business day, receiving applications need to join the static multicast address/port of

the reference data interface in order to receive the following messages:

 Product snapshot to receive the functional and technical parameters.

 Instrument snapshot to receive instrument details.

INDIAINX Market & Reference Data Interfaces Manual V1.1

35

 Instrument incremental to receive intraday updates.

Port information and multicast addresses for the reference data feeds as well as the address ranges for

market data are in section 12, Multicast addresses. Port information and multicast addresses for market

data feeds are delivered as part of the reference data feeds.

Further detailed information about reference data is provided in section 9.2, General reference data

rules. However, the basic steps in order to receive reference data are the following:

1. Listen to the reference data incremental feed and start buffering instrument incremental messages.

If an application starts listening to the reference data messages early enough, there are no instrument

incremental messages available.

2. Listen to the reference data snapshot feed. Ignore all the messages until you reach the market data

report message denoting the beginning of a snapshot. Take note here of two values:

 MDCount, containing the number of reference data snapshot messages in the initial

snapshot cycle.

 LastMsgSeqNumProcessed, containing the sequence number of the last message at the

end of the snapshot cycle; this could be a snapshot or an incremental message.

Process all messages of the snapshot until you encounter the market data report message denoting the

end of the snapshot cycle.

3. At this point you need to complete the list with the messages received on the incremental feed since

you started listening. But only after you have discarded all messages having 10:

MsgSeqNum <= LastMsgSeqNumProcessed - MDCount.

4. Store the reference data information for future use.

5. Join the market data incremental feed of EMDI or the market data feed of MDI in order to receive

additional reference data changes.

6. Leave the reference data snapshot and incremental feeds.

Note: Applications starting early do not require steps 1 and 3 since no incremental message exists at

this time.New complex instruments predefined by the exchange are also sent in instrument incremental

before the start of the actual trading.

10 The snapshot and incremental feeds have a different sequence number range.

INDIAINX Market & Reference Data Interfaces Manual V1.1

36

6.3 Receiving reference data file (RDF) at start of day

Participants with low bandwidth connections may retrieve the start-of-day reference data in a file based

format.

The initial reference data file generated at start-of-day contains the “reference data snapshots”

available from the previous day. During the actual trading multiple incremental files are created as

complex instruments are added and deleted.

New complex instruments predefined by the exchange are also sent in incremental files before the start

of the actual trading.

In case a receiving application starts late, each of the intraday Reference Data Files in addition to

the Start-Of-Day Reference Data File must be applied. Start-Of-Day and Intraday Reference Data Files

are available via the Common Report Engine.

6.4 Build the initial order book

Participants first have to build the initial order book. The order book has to be maintained per

instrument.

6.4.1 Build the initial order book with the EMDI

For each instrument within the desired products do the following:

Note: Participants interested in complex instruments should use the complex instrument update

messages. These are published on the market data incremental feed of the EMDI as well as on

the market data feed of the MDI. They are published faster than the instrument incremental

message of the reference data incremental feed.

Note: In case a late starting application uses the Start-Of-Day Reference Data File without the

intraday files, the intraday created complex instruments remain unknown and hence order book

data may be received for unknown instruments.

Note: Sequence numbers contained in the market data messages are incremented per product.

INDIAINX Market & Reference Data Interfaces Manual V1.1

37

Figure 6: EMDI initial order book

6.4.2 Build the initial order book with the MDI

The following sequence is recommended for the MDI:

Figure 7: MDI initial order book

INDIAINX Market & Reference Data Interfaces Manual V1.1

38

The field LastMsgSeqNumProcessed (369) in the MDI snapshots can be ignored because snapshots and

incremental are sent in-band and don’t need to be synchronized with each other.

6.5 Update the order book

Every update in the form of a depth incremental or depth snapshot message contains the price level

and the actual price to which the instruction needs to be applied. The receiver application can

update information at a particular level with the new information.

Once participants have built the current order book it needs to be continuously updated:

6.5.1 Update the order book with the EMDI

As long as the MsgSegNum values for the depth incremental message are contiguous per product do the

following 11:

 Keep applying all depth incremental messages to the current order book.

6.5.2 Update the order book with the MDI

As longs as the MsgSegNum values for the depth incremental message are contiguous per product do

the following 11:

 Keep applying all depth incremental as well as depth snapshot 12 messages to the

current order book.

11 The reason is that the unreliable nature of UDP multicast can cause packets to arrive delayed, in incorrect sequence or may

be missing.
12 only if the Refresh Indicator (1187) = Y

Note: MDI applications must process depth snapshots beside the depth incremental because the

snapshots might contain new information. If the RefreshIndicator (1187) is set the depth

snapshot contains order book information that has not been sent in a depth incremental.

Note: Depth snapshot messages are sent on a different channel as the depth incremental

messages. Changes to the order book are also sent using the depth snapshot messages but

the information is also provided with the incremental messages. Snapshot messages don’t

need to be processed unless the order book needs to be recreated.

INDIAINX Market & Reference Data Interfaces Manual V1.1

39

Each incremental message can carry different update instructions with the “update action” (New,

Change, Delete, Delete From, Delete Thru, Overlay).

Note: The depth snapshot messages for the MDI are sent on the same channel as the depth

incremental messages. If the RefreshIndicator (1187) is set, changes to the order book are

processed into the depth snapshot messages and not provided as separate depth incremental

messages.

INDIAINX Market & Reference Data Interfaces Manual V1.1

40

7 Recovery

Due to the unreliable nature of UDP multicast it is possible that some packets may either be delayed,

arrive in the incorrect order or may be missing. Furthermore the UDP packets may be duplicated at the

network level. Receiving applications need to be capable of handling these issues. This chapter de-

scribes the scenarios which might occur and provides a guideline on how a receiving application needs

to react to those scenarios.

Recovery actions are possible on a packet level by using the respective other service (A or B). In case a

packet is lost on both services (A and B) clients can create a new current order book by using snapshot

information.

7.1 Detecting duplicates and gaps by means of the packet header

The packet header allows receiving applications to identify identical packets between Service A and

Service B. This is achieved by a simple memory comparison on the first 9 bytes for EMDI or 8

Bytes for MDI of a datagram containing SenderCompId and PacketSeqNum as shown in figure 21,

Structure of the packet header for EMDI and figure 22, Structure of the packet header for MDI and RDI.

Another important function of the packet header is to identify gaps by means of the PacketSeqNum

which can be retrieved just by decoding the packet header.

This means that field PacketSeqNum can be used not only to detect duplicates but also to detect missing

packets. PacketSeqNum is a Byte vector and therefore not stop bit encoded as per the FAST

specification.

The packet header itself does not contain any product information. In order to find out which product

is missing, the product level sequence number must be used in addition to the packet level

sequence number; the packet needs to be decoded further down to the message level. This leaves

participants with two recovery options when a gap in the PacketSeqNum’s of the packet header is

detected.

Example:

A single multicast address carries products FDAX and FGBL, but the participant is only interested in

FGBL.

Note: Packets with the same SenderCompID (field length: 1 Byte) have contiguous sequence

numbers per multicast address / port combination.

INDIAINX Market & Reference Data Interfaces Manual V1.1

41

I. Pessimistic approach: The receiving application assumes that FGBL is part of the missing packet. It

immediately starts recovery actions 13 just by decoding the packet header.

 Advantage: Recovery is triggered immediately when oINDIAINXrving a missing

PacketSeqNum without decoding the entire message.

 Disadvantage: The recovery might not be necessary, if FGBL is not part of the message

which is inside the lost packet.

II. Optimistic approach: The receiving application assumes that FGBL is not part of the missing packet. It

waits for the next message on the same service and decodes the packet up to the message level to find

out if a packet for FGBL has been lost before triggering recovery actions.

 Advantage: This approach allows the participant to recover only products of interest.

 Disadvantage: The receiving application needs to wait for the next message. However,

the next packet may not contain a message for the product in question.

 13 by means of the other service (live-live concept) or by listening to the depth

snapshot

7.2 How to recover data via the respective other service (A or B)

Feeds are replicated onto two services, “Service A” or “Service B”, and carried on different multicast

addresses. This feature provides the possibility to recover missed packets, and participants are advised

to join both services.

In each of the following tables, the “Time” column is entirely arbitrary and is intended to show only the

sequence of events and in some cases the relative delay between dependent events.

The following table explains the design concept for Service A and B. The table contains the field

MsgSeqNum from the message itself. However, it could also contain the field PacketSeqNum from the

Packet Header.

Time Service A:
MsgSeqNum

Message Time Service B:
MsgSeqNum

Message

10:30:00 206 New 151@4 10:30:01 206 New 151@4

10:30:05 207 Delete 151@5 10:30:07 207 Delete 151@5

 Lost 10:30:12 208 New 151@5

10:30:10 209 New 152@4 10:30:13 209 New 152@4

Table 9: Recovery via Service B (live-live concept)

INDIAINX Market & Reference Data Interfaces Manual V1.1

42

As the above example shows, the same information is delivered on Service A and B. While MsgSeqNum=

208 is missing on Service A, it is provided on Service B.

Ideally a receiving application processes packets from both Service A and B simultaneously and would

take into account the message that arrives first and discards the second (identical) message.

In the unlikely event that the message has neither been received via Service A nor Service B, the receiver

is required to initiate a loss of data scenario:

 The order book needs to be recreated by using the depth snapshot messages in

conjunction with the depth incremental messages. This procedure is similar to the Start

Up procedure. Please see section 6.4, Build the initial order book.

7.3 Delayed packets

The following example indicates a simple case:

Time MsgSeqNum Message

10:30:00 132 New 151@4

10:30:04 133 Delete 151@5

10:30:39 134 New 152@4

Table 10: Packets arriving in correct sequence

In this example, messages arrive in the correct order. The message was not delayed between INDIAINX

and the receiving application. There is no special requirement on the application; the message can be

processed in the same order as they arrive.

Multicast does not guarantee that the order in which packets are received is the same as the order in

which they are sent. For instance, INDIAINX Market Data Interface sends incremental messages in

ascending MsgSeqNum order, but they might arrive in an incorrect order at the receiving application.

Consider the following example:

Time MsgSeqNum Message

10:30:00 206 New 151@4

10:30:04 208 Delete 151@5

10:30:10 207 New 152@4

Table 11: Delayed Packet 207

INDIAINX Market & Reference Data Interfaces Manual V1.1

43

In this example, message 207 is delayed within the network, allowing message 208 to arrive first. A

correct communications layer responds as follows:

1. Release message 206 to the application immediately on arrival.

2. On arrival of 208, recognizes that 207 is missing.

3. Start an appropriate timed operation to trigger the recovery actions if the out-of-sequence message

207 fail to arrive in a reasonable time.

4. Assuming that 207 arrives within that reasonable time, release 207 and then 208 to the application

in that order and cancel the timed recovery action.

7.4 Missing packets

All lost packets start life as “delayed” packets, as illustrated in the preceding case. The communications

layer of the receiving application is responsible for deciding when to declare a network packet as lost. In

the following example it is assumed that MsgSeqNum = 207 from the example above does not arrive

within the allowed time. Therefore it is considered as lost:

Time MsgSeqNum Message

10:30:00 206 New 151@4

 lost

10:30:04 208 Delete 151@5

10:30:10 209 New 152@4

Table 12: Missing seqNum 207

The correct behavior in this instance is:

1. Release message 206 immediately on arrival.

2. Hold on to 208 because it is out-of-sequence, and initiate timer-based recovery actions.

3. Hold on to 209 for the same reason. Timer-based recovery actions are already pending for this

product, so do not reset the timer.

INDIAINX Market & Reference Data Interfaces Manual V1.1

44

(a) Even though message 209 is a “New” operation, it may be unsafe to apply 208 and

209 because we do not know what 207 contains.

4. If the missing message (207) fails to arrive within the allowed time:

(a) Initiate recovery from the respective other service (A or B) for message (207). If this works

then release (207) and then all messages with higher MsgSeqNum’s.

(b) In case the recovery from the respective other service (A or B) fails: initiate recovery via

snapshots.

7.4.1 Recovery (EMDI)

Depth snapshot and depth incremental messages are distributed via separate channels for the EMDI.

For instance, depth incremental messages could be sent on multicast address A2
I, port x and the

snapshot message on multicast address A2
S with port y (see Figure 2, Overview of the three interfaces).

Incremental are sent whenever there is a change of the order book (event-driven); snapshots are sent

periodically in intervals regardless of whether the order book has changed since the last snapshot (time-

driven).

Each message sequence number (field: MsgSeqNum) on the market data incremental feed is unique and

contiguous by product across messages. Therefore the sequence number can be used to detect losses.

If any gap of the arriving sequence numbers is detected and this gap cannot be filled by using the

respective other service (A or B) the receiving application should initiate a snapshot recovery.

The following example shows missing depth incremental messages (MsgSeqNum’s 208-209) and

depth snapshots (with LastMsgSeqNumProcessed) which relate to the missing message.

MsgSeqNum’s for the depth snapshot do not exist, which is indicated with “N/A” in the table.

MsgSeqNum Product LastMsgSeq
NumProcessed

Message Type Channel

205 A depth incremental A1
I

206 A depth incremental A1
I

207 A depth incremental A1
I

Lost A depth incremental A1
I

Lost A depth incremental A1
I

210 A depth incremental A1
I

1000 B depth incremental A2
I

N/A A 209 depth snapshot A1
s

211 A depth incremental A1
I

N/A B 1000 depth snapshot A2
s

INDIAINX Market & Reference Data Interfaces Manual V1.1

45

1001 B depth incremental A2
I

Table 13: Snapshots and incremental within the EMDI

The appropriate recovery action for missing depth incremental is the same as the logic described in

section 6.4.1; Build the initial order book with the EMDI.

There are some additional points to be aware of when performing recovery:

 During recovery, applications should be prepared to receive depth incremental

messages for instruments they didn’t know existed. This can occur if a strategy creation

event (via a complex instrument update on the market data feed) is missed due to

packet loss. In this case, applications must consult the reference data snapshot feed to

obtain the strategy description.

 The corollary to the above is that an application may have missed a complex instrument

update indicating a strategy deletion message. Deleted strategies are immediately

removed from the snapshot feed, so having seen a complete cycle for a product and

noting that no order book information was received for a strategy, the application

should consult the reference data snapshot feed to confirm that it has been deleted.

 Depth snapshot messages are not sequenced, but they are still theoretically subject to

out-of-order packet delivery. Applications must consider this in determining that their

snapshot cycle is complete. The packet sequence number in the packet header can be

used to detect out-of-order delivery.

 The LastMsgSeqNumProcessed (369) is not necessarily the same for all instruments

belonging to a product on the market data snapshot feed.

There are two ways to determine when to leave the snapshot feed during recovery:

Method 1: Process specific products

For each SenderCompID (49) contributing to the market data snapshot feed, depth snapshot messages

are grouped by product as illustrated below:

P1 I1 | P1 I2 | P1 I3 | P1 In | P2 I1 | P2 I2 | P2 I3 | P2 In | P3 I1 | P3 I2 | P3 I3 | P3 Iq | [...]

Note: The market data snapshot feed does not contain any “start” or “end” messages to

delineate the cycle.

INDIAINX Market & Reference Data Interfaces Manual V1.1

46

with:

Pn : Product n

Iq : Simple or complex instrument q for product n

Depth snapshots for instruments in the same product will often all appear in the same packet, but

this should not be relied upon as it is not true when the amount of data is simply too great to fit into

a single packet, and under certain other technical conditions on the exchange.

A change of product MarketSegmentID (1300) for a given SenderCompID (49) indicates the end of the

depth snapshot messages for the respective product. This allows applications to easily determine when

they’ve received a snapshot for every instrument in the products they’re interested in and leave the

snap- shot feed.

Method 2: Process an entire depth snapshot cycle

It’s also easy for an application to listen to an entire snapshot cycle.

Applications can determine when they’ve seen an entire snapshot cycle simply by remembering the Se-

curityID (48) of the first depth snapshot message they saw from each SenderCompID (49).

When they see the same SecurityID (48) again for each SenderCompID (49), they know that a complete

depth cycle has been seen and can leave the snapshot feed.

7.4.2 Recovery (MDI)

Snapshot and incremental messages are sent on the same channel and carry a contiguous sequence

number (field: MsgSeqNum) per product. The snapshot always carries the latest information and might

carry new information, not already sent with an incremental message. The following table shows an

example for the distribution of incremental and snapshot messages for two products:

MsgSeqNum Product Message Type Channel

5 A depth incremental A1
S,i

6 A depth incremental A1
S,i

Note: Receiving applications also need to consider depth snapshot messages for newly created

complex instruments.

Note: If a failover occurs during snapshot processing the SenderCompID (49) for the affected

partition changes and the snapshot cycle for that partition starts again.

INDIAINX Market & Reference Data Interfaces Manual V1.1

47

Lost A depth incremental A1
S,i

25 B depth incremental A2
S,i

8 A depth incremental A1
S

9 A depth snapshot A1
S

10 B depth snapshot A2
S,i

11 A depth incremental A1
S,i

26 B depth snapshot A2
S,i

27 B depth snapshot A2
S,i

Table 14: Snapshots and incremental within the MDI

If the depth incremental message for product A with MsgSeqNum = 7 is lost, a consistent order book can

be rebuilt from the next snapshot message for product A, in this case arriving with MsgSeqNum=9.

All depth incremental messages for product A with a lower sequence number than the next market data

snapshot message for product A must be discarded, e.g. MsgSeqNum = 8 (incremental) must be

discarded as its effect is included in MsgSeqNum = 9 (snapshot).

Since multicast doesn’t guarantee the correct sequence of the incoming message, it is recommended to

buffer all incoming incremental while waiting for the next snapshot message. The buffered incrementals

for product A with MsgSeqNum ≥ 11 can be applied to the latest snapshot with MsgSeqNum = 10.

Note: LastMsgSeqNumProcessed is not necessary for recovery purposes in the MDI.

INDIAINX Market & Reference Data Interfaces Manual V1.1

48

8 Various time stamps in INDIAINX and how to use them

This section provides a list of each time stamp field in the two INDIAINX Market Data Interfaces; it

describes the measurement point and explains what is being measured.

All time stamps are provided in UTC (nanoseconds since “Unix Epoch” (01.01.1970)). While the format is

provided in nanoseconds the actual precision of time stamps can be in microseconds. In that case the

last three digits of the time stamp field is “000”.

8.1 Time stamps (EMDI)

The following picture shows all time stamps on the INDIAINX Matching Partition for requests/responses

for orders and execution messages:

Figure 8: Time stamps and their measurement points

INDIAINX Market & Reference Data Interfaces Manual V1.1

49

Message Field Name Time stamp Description of time stamp

Packet header PerformanceIndicator t3 -t0 Time between the arrival of
an incoming order
transaction on the INDIAINX
matching engine and send
time of the corresponding
outgoing market data. The
PerformanceIndicator is sent
for Incremental only.

Sending Time t3 Time, the INDIAINX Market
Data is written onto the
socket for the fastest Service
(A or B). For more
information please see
“distribution sequence”.
The time stamp is the same
for Service A and Service B
even though packets on both
services are not sent out at
the same time.

Depth incremental MDEntryTime14 t2 Two possibilities:
• In case of an order: Time of
the last order book update.
• In case of a trade: Match
time.

Depth incremental AggressorTimeStamp15

t0

Entry time of the incoming
order that triggered the
trade.
This time stamp is only
available in case of a trade
(MDEntryType=2).

The AggressorTimeStamp is
empty if
• The trade resulted from an
auction.

Depth snapshot LastUpdateTime t2 Time of the last order book
update.

Instrument
incremental

Complex instrument
update

TransactTime

t2 Creation time of complex
instrument. This field is
empty for deletions of
complex instruments.

INDIAINX Market & Reference Data Interfaces Manual V1.1

50

Mass instrument
state change
Product state
change
Instrument state
change

TransactTime t2 Time when request was
processed by the matcher.

Table 15: Meaning of the time stamps

Further information about time stamps are available in the ETI manual, section “Timestamps”

8.2 Time stamps (MDI)

The field PerformanceIndicator in the packet header message is not available for the INDIAINX MDI. Also

the field AggressorTimeStamp (28820) will not have any value. All other fields are the same as for the

INDIAINX EMDI.

The field LastUpdateTime in the depth snapshot message contains the time at which the last update was

applied to the order book. In the special situation that several orders entered in the middle of a netting

interval cancel each other out, this field shows the time stamp of the last order entry even though the

net result is that there is no actual change.

An example of when this would happen is the creation and suINDIAINXquent deletion of an order within

the netting interval.

__
14 This field maps to ExecID (17) in INDIAINX ETI order / quote responses and notifications as well as to TransactTime (60) in

the

INDIAINX Market & Reference Data Interfaces Manual V1.1

51

INDIAINX ETI Trade Notification.
15 This field maps to TrdRegTSTimeIn (21002) in INDIAINX ETI.

9 Important topics with use cases and examples

The following section “Use Cases” describes situations which require special attention. Various examples

are provided.

9.1 Reference data messages

Reference data provides technical and functional information about all products and instruments

available in INDIAINX. Reference data messages are sent within different feeds:

 Snapshot feed of INDIAINX RDI provides a snapshot of all products and instruments

(simple and complex) and is sent out on a regular basis throughout the day.

Additions or deletions of complex instruments are incorporated into the next snapshot

cycle.

 Incremental feed of INDIAINX RDI is event triggered and provides real-time

information about complex instruments16 that are added or deleted intraday. Any

change is incorporated within the next snapshot cycle. The incremental feed never

contains simple instruments.

 Market data incremental feed of EMDI is event triggered and provides real-time

information about complex instruments that are added or deleted intraday on the same

channel as market data.

 Market data feed of MDI is event triggered and provides real time information about

complex instruments that are added or deleted intraday.

The following messages are sent via different feeds:

a) Snapshot feed of RDI:

 Product snapshot for products available at start of day.

 Instrument snapshot for simple and complex instruments available at start of day.

 Instrument incremental for complex instruments added or deleted intraday.

INDIAINX Market & Reference Data Interfaces Manual V1.1

52

 Market data report indicates the start of reference data (MDReportEvent=1).

 Market data report indicates the end of reference data (MDReportEvent=2).

b) Incremental feed of RDI:

 Instrument incremental for complex instruments added or deleted intraday.

 c) Market Data incremental feed of EMDI:

 Complex instrument update17 for complex instruments added or deleted intraday.

d) Market data feed of MDI:

 Complex instrument update17 for complex instruments added or deleted intraday.

INDIAINX Market & Reference Data Interfaces Manual V1.1

53

16 No product information is delivered
17 The layout is the same as on the instrument incremental message except for the field SecurityExchange (207), SecurityStatus

(965) and SenderCompID (49)

9.2 General reference data rules

9.2.1 General structure of the snapshot cycle

A snapshot cycle consists of (see figure 9):

A market data report message (MDReportEvent = 1 = “StartOfReferenceData”).

A sequence of a product snapshot followed by the associated instrument snapshots (simple and

complex), repeating for all products and instruments.

A dynamically growing sequence of instrument incremental messages (complex instruments).

Finally market data report message (MDReportEvent = 2 = “EndOfReferenceData”).

 Figure 9: Entire snapshot cycle on the RDI snapshot feed

with:

Pn : Product n

Inq : Simple instrument q for product n

Cnm : Complex instrument m for product n

Product and instrument snapshot messages are sent for the initial set of products and instruments.

While the snapshots do not change intraday, the number of incremental messages increases if complex

instruments are added or deleted. Figure 10 illustrates how more instruments incremental are added

over the course of n cycles:

INDIAINX Market & Reference Data Interfaces Manual V1.1

54

Figure 10: Reference data with constant snapshots and extending incremental

9.2.2 Counters as part of the market data report message

The message sequence numbers of the market data report messages preceding each snapshot cycle

represent counters for the number of snapshots, incremental and overall number of messages within

the current cycle.

The market data report message, type: “StartOfReferenceData”, contains the following sequence

number fields:

 MDCount (5488): Number of reference data messages in the snapshot cycle, which is

available at the start of day and remains constant throughout the operational hours of

reference data service for the current business day. The value represents the number of

products + the number of instruments (simple + complex) at start-of-day. If a failure of

INDIAINX RDI occurs the number of messages in the reference data snapshot and

herewith MDCount (5488) changes.

 LastMsgSeqNumProcessed (369): This is the MsgSeqNum value of the last reference

data message (snapshot or incremental) in the snapshot cycle (products and

instruments share a single sequence number.).

 TotNoMarketSegments (8825): Contains the number of product messages sent in the

snapshot feed. This value remains constant intraday as products are not created or

deleted intraday.

Note: Overnight changes to the products and instruments are reflected in the reference data

snapshot messages after the technical start on the next business day.

Note: The number of incremental updates in a snapshot cycle can be calculated as: Number of

incremental updates = LastSeqNumProcessed - MDCount.

INDIAINX Market & Reference Data Interfaces Manual V1.1

55

 TotNoInstruments (8826): Contains the number of instrument messages sent in the

snapshot feed. This value changes as more complex instruments are created or deleted

intraday.

TotNoMarketSegments (8825) and TotNoInstruments (8826) can be used as sanity check and to pre-

allocate the product and instrument containers.

The market data report message, type: “EndOfReferenceData” marks the end of reference data

messages and doesn’t contain any counters.

The following examples highlight a few scenarios which require special attention. The focus lies on the

reference data snapshot feed which provides constant snapshot messages and a variable part with

incremental for complex instruments. 18

9.2.3 Use case 1: Reference data at the start of the reference data service

At the start of the reference data service the reference data snapshot is sent. Figure 11 shows how

snapshots for simple and complex instruments which are already in the system are sent at start of day:

Figure 11: Reference data snapshot message on the reference data snapshot feed at the start of the

reference data service

The first snapshot cycle can already contain some complex instruments in the snapshot messages. A

reference data incremental message does not exist at this time.

9.2.4 Use case 2: Reference data after intraday addition of complex instruments

The next example shows an intraday addition of three complex instruments C11, C41 and C33. See

figure12). The reference data incremental messages for complex instruments C11, C41 and C33 are

appended to the reference data snapshot messages:

__

18 Participants interested in complex instruments can also use the complex instrument update message via the faster

depth incremental feed of EMDI or the market data feed of MDI.

INDIAINX Market & Reference Data Interfaces Manual V1.1

56

Figure 12: Reference data snapshot after intraday addition of complex instruments C11, C41 and C33

LastMsgSeqNumProcessed (369) in the market data report, type: “Start of Reference Data” increases to

103. The no. of incrementals (products + instruments) can be calculated as

LastMsgSeqNumProcessed - MDCount = 103 - 100 = 3.

New complex instruments predefined by the exchange are sent in instrument incremental and not in

Snapshot messages on the day of creation; the messages are sent before trading starts.

9.2.5 Use case 3: Reference data after intraday deletion of a complex instrument

The next example shows an intraday deletion of a complex instrument C41 * (figure 13). The deleted

complex instrument C41 * is sent as reference data incremental message and appended again to

previously generated complex instruments C11 , C41 and C33 :

Figure 13: Reference data snapshot after intraday deletion of complex instrument C41 *

INDIAINX Market & Reference Data Interfaces Manual V1.1

57

Since one complex instrument is deleted, LastMsgSeqNumProcessed (369) increases to 104 snapshot

and incremental messages.

9.2.6 Use case 4: Reference data on the next business day

The complex instruments which still exist on the next business day and which have been sent as

reference data instrument incremental on the previous business day, are sent as instrument snapshot

messages on the next business day, if orders still exist in the respective order books as shown in figure

14:

 Figure 14: Reference data snapshot on the next business

At the beginning of the next business day19 LastMsgSeqNumProcessed (369) is 102 as this reflects the

number of remaining complex instruments C11 and C33. C41 has already been deleted on the previous

business day (see use case 3). At this point in time MDCount (5468) has increased to 102 as well.

The same scenario would be true if the reference data server would have been restarted intraday (due

to a technical failure).

9.2.7 Use case 5: Failover or restart of RDI

In the event that RDI fails, another instance takes over. Receiving applications can detect this by a

change of the SenderCompID and the receipt of a market data report message. Applications should

respond to this situation as described in section 6.2, Receiving reference data via RDI at start of day. The

same recovery actions apply in case of a complete restart of RDI.

If RDI fails over the instrument snapshot contains any complex instruments already created and deleted

during the day, i.e. the entire history. If RDI needs to be restarted by the exchange a new snapshot cycle

is generated. This cycle contains the currently existing complex instruments but not the entire history of

creations and deletions.

19 also in case of a feed restart on the exchange side

INDIAINX Market & Reference Data Interfaces Manual V1.1

58

9.2.8 Use case 6: Chronological order of messages for complex instrument creation

The intraday creation and deletion of complex instruments results in the following sequence of

messages:

1. On the market data incremental feed of the EMDI and market data feed of the MDI: An

instrument incremental message is sent to inform the participant as fast as possible. In case a new

complex instrument has been created the corresponding message is sent prior to the publication of any

order book data for the new complex instrument.

2. On the reference data incremental feed of the RDI: An instrument incremental message is also sent

with additional fields populated. There is no product incremental message.

3. On the reference data snapshot feed of the RDI: An instrument incremental message is appended

to the end of the current snapshot cycle without removing or changing any of the existing snapshot or

incremental messages in the cycle20 . Therefore the cycle is only extended intraday and never reduced,

even if complex instruments are added and deleted intraday.

9.3 General order book rules and mechanics

The INDIAINX Market Data Interfaces, EMDI and MDI, provide order book updates from level 1 to the

maximum level. The maximum level is provided for each product in the product snapshot records in the

reference data field MarketDepth (264). The order book can be constructed by the depth incremental

messages or by the depth snapshot message.

All on-exchange trades and order book updates are reported via the same depth incremental messages.

However, trades are always sent out prior to order book updates. The following design principles apply

to order book updates:

 Orders are aggregated per price level and are not distributed individually.

 Changes to the book that result from one atomic action in the matching engine are

disseminated in one depth incremental message for EMDI.

 Each INDIAINX EMDI packet relates only to a single product. In other words, although

each INDIAINX EMDI packet may contain multiple messages, those messages will always

relate to the same product. This does not apply to INDIAINX MDI where a single packet

may relate to multiple products.

20 A complete snapshot cycle is a combination of start, refdata snapshots, refdata incremental and end message.

INDIAINX Market & Reference Data Interfaces Manual V1.1

59

 Price levels are provided explicitly (field: MDPriceLevel (1023)) and do not need to

be derived through the price itself.

 During the product states “Start-Of-Day”, “Pre-Trading”, “Post-Trading” and “End-Of-

Day” or when no price levels exist, an empty book (MDEntryType=J) is disseminated for

the depth snapshot message (not for incremental). In addition to an empty book,

statistical information is sent in “Pre-Trading”, “Post-Trading” and in “End-Of-Day”.

 An implied price is the only element of the group without a price level (for MDEntryType

= 0 = Bid or 1 = Offer). For price levels from 1 to max price levels, outright prices are

distributed. An implied price can either be fully implied or partially implied (for more

information please refer to section 9.3.1, Determination of the price sources).

 If two (or more) synthetic prices (with the same price) are created for the Best Market

via a different path, the sums of the quantities are reported for the particular price. An

example is provided in section 14.2.4, table 49.

 There can be multiple updates in one message. The bid side is updated first followed by

the ask side.

 If update instructions “new” or “delete” is sent for an implied price, the order book

levels 1-n don’t need to be shifted down or up.

 Order book update instructions are sent for each order book side without a specific

order of update actions but ordered by price level instead.

– from best outright price (price level 1)

– down to the worst price (max. price level configured per product).

– if the resulting book depth is larger than the specified maximum product depth

only the specified maximum product depth must be saved.

 For auctions, the best bid/ask prices are disseminated at price level 1 without a

quantity. Receiving applications need to delete a pre existing quantity when an

aINDIAINXnt value is received during a transition into an auction.

 During an auction, there can either be a crossed or an uncrossed book situation. A

crossed book is identified to the user by means of a auction clearing price

(MDEntryType=Q) (aka indicative or potential auction price). An uncrossed book is

identified by means of ToB prices (MDEntryType 0=Bid and/or 1=Offer).

INDIAINX Market & Reference Data Interfaces Manual V1.1

60

The change from a crossed to an uncrossed book situation and vice versa is implicitly identified by

sending ToB information instead of a auction clearing price and vice versa.

The previous ToB information or auction clearing price is only explicitly removed (MDUpdateAction

2=Delete) whenever an uncrossed or crossed book changes to an empty book during an auction.

A instrument state change message identifying an instrument leaving an auction also implicitly

deletes the Auction Clearing Price. The visibility of the order book is limited during an auction. Depth

information will be explicitly provided again when transitioning from an auction to continuous trading

as the user cannot know how much of an order book situation prior to the auction is still valid.

Depth information will also be explicitly removed when transitioning from continuous trading to an

auction and the auction starts with an uncrossed order book.

Figure 15 illustrates a particular scenario for an opening auction. The three situations order book

“Crossed”, “uncrossed” and “empty” can appear in any sequence within the auction

Figure 15: Example for an Opening Auction with implicit and explicit “Deletes”

Note: In general, INDIAINX sends explicit deletes during an auction. However, during the

transitions described below, receiving applications need to perform the following actions:

- From ToB to Auction Clearing Price: Receiving applications need to delete ToB.

- From Auction Clearing Price to ToB: Receiving applications need to delete the Auction Clearing

Price.

- Whenever the auction ends and another instrument state starts: Receiving applications need to

delete the Auction Clearing Price.

INDIAINX Market & Reference Data Interfaces Manual V1.1

61

 A state transition to Freeze is sent as an instrument state change message and does not

require any implicit action.

 If the book is crossed, an indicative auction price is calculated and disseminated. The

new indicative auction prices are always sent with update action “New”.

 Intraday expired instrument information is provided by a depth incremental and

instrument state change message.

 Only the snapshot and incremental messages of the MDI carry a common and

contiguous sequence number per product. The incremental message of EMDI contains

a contiguous sequence number per product across all messages, while the snapshot

message provides the last sequence number (LastMsgSeqNumProcessed) sent in the

incremental message.

 Only the best implied price is published. The best implied price will be included in

market data only in case it is equal to or better than the best direct price in the

respective instrument.

 Whenever the quantity or price of the Best Market changes it is disseminated with

update action

 “New” on the incremental feed. Similarly, the Best Market is removed with update

action “Delete”.

Note: The order book is only valid after the entire incremental message has been fully processed.

INDIAINX Market & Reference Data Interfaces Manual V1.1

62

Figure 16 illustrates a typical order book and terminology used in the following chapters.

 Figure 16: Typical order book

An implied price can be either better (fully implied) or the same (partially implied) as price level 1.

9.3.1 Determination of the price sources

The new trading platform supports synthetic matching, where the implied prices from complex

instruments can create prices equal or better than the best outright price in the instrument. The

implied prices are disseminated in the market data in addition to the prices from outright orders. These

prices are shown without a price level. The reported quantities for implied prices and level 1 are not

aggregated, i.e. quantities on level 1 are fully outright and do not contain any implied components.

The INDIAINX system publishes implied prices in market data only in case it is equal to or better than the

best outright price in the respective instrument.

In order to find out which situation applies, a price comparison between the implied price (with empty

price level) and level 1 (see figure 16) needs to be done:

1. Implied price is better than the outright price at level one -> Fully Implied.

2. Implied price disseminated is equal to the outright price at level 1 -> Partially Implied.

INDIAINX Market & Reference Data Interfaces Manual V1.1

63

3. Implied price is deleted or aINDIAINXnt -> the Best Market price is fully outright and is the same as on

level

Examples for all three cases are provided in section 14.2, Example for determination of the price source.

9.3.2 New price level

When a new price level is created in the order book, a depth incremental message is sent with

field MDUpdateAction (279) = 0 ("New”). This indicates that:

 The new price level is to be inserted at the specified price level.21.

 All existing rows in the order book at the specified and higher levels are to be

incremented accordingly.22.

 Price levels exceeding the maximum specified depth must not be kept in memory.

Note: The field MDPriceLevel (1023) is used to identify which level is being inserted.

Example: Buy Limit Order, 10@58.22, enters an empty order book:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price

271 > MDEntrySize 10 Quantity

346 > NumberOfOrders 1 Number of order on this level

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t0 official time of book entry

 Table 16: MDUpdateAction “New”

INDIAINX Market & Reference Data Interfaces Manual V1.1

64

21 A MDUpdateAction (279) = 0 (“New”) is also disseminated whenever the quantity changes for the implied price (empty

price level).
22 This is not the case if the MDUpdateAction (279) = 0 (“New”) is sent for the implied price (with empty price level).

9.3.3 Change of a price level

A depth incremental message with MDUpdateAction = 1 ("Change”) indicates

 A change at a given price level.

 All fields but the price on the specified side at the price level should be updated.

Note: MDUpdateAction=“Change” is sent only for depth ≥ 1 when the price does not change. A

MDUpdateAction (279) "Change” contains a price which can be used as a consistency check. However,

it never contains a price that is different from the existing one on the current price level.

Example: Quantity changed to 8 for limit order above:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 1 Change

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price

271 > MDEntrySize 10 Quantity

346 > NumberOfOrders 1 Number of order on this level

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t1 official time of book entry

 Table 17: MDUpdateAction “Change”

9.3.4 Overlay

A depth incremental message with MDUpdateAction (279) = 5 ("Overlay”) is used to

 Change the price of a given price level. Other parameters, e.g. quantity might also

change.

INDIAINX Market & Reference Data Interfaces Manual V1.1

65

Note: MDUpdateAction=“Overlay” is sent only for depth ≥ 1, i.e. the field MDPriceLevel (1023) must

be present. In contrast to the MDUpdateAction=“Change” this instruction contains a price change. The

overlay function is normally used when there is just one price level disseminated.

Example: Buy limit order replaces the best buy limit order during instrument state “Auction”:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 205

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 5

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 2.48 Price

271 > MDEntrySize N/A Quantity remain same in this
example

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t5 official time of book entry

 Table 18: MDUpdateAction “Overlay”

9.3.5 Deletion of a price level

A depth incremental message with MDUpdateAction (279)= 2 ("Delete”) is used

 to delete a specified price level.

Note: All price levels greater than the deleted one should be decremented. The price of the price level

to be deleted is also sent within the message and can be used as a consistency check.

Example: Deletion of limit order modified above:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1070

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 2 Delete

INDIAINX Market & Reference Data Interfaces Manual V1.1

66

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price

271 > MDEntrySize N/A Quantity not populated for
“Delete”

1023 > MDPriceLevel 1 Book level

273 > MDEntryTime t1 official time of book entry

 Table 19: MDUpdateAction “Delete”

9.3.6 Deletion of multiple price levels from a given price level onwards

A depth incremental message with MDUpdateAction (279) = 4 ("Delete From”) is used to

 Delete all price levels ≥ specified price level.

Note: All price levels from the specified one and up to the maximum need to be deleted.

Example: Deletion of all orders for SecurityID = 8852, MarketSegmentID = 89 from level 3 and above:

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 4 Delete From

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.19 Price

271 > MDEntrySize N/A Quantity not populated

1023 > MDPriceLevel 3 Book level

273 > MDEntryTime t3 official time of book entry

 Table 20: MDUpdateAction “Delete From”

9.3.7 Deletion of multiple price levels up to a given price level

A depth incremental message with MDUpdateAction (279) = 3 ("Delete Thru”) is used to

INDIAINX Market & Reference Data Interfaces Manual V1.1

67

 Delete all price levels from 1 to the specified price level.

Note: All higher than the specified price levels are shifted down to fill the gap of the deleted price

levels.

Example: Deletion of all price levels from 1 to price level 3.

Tag number Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1068

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 3 Delete Thru

269 > MDEntryType 0 Bid

48 > SecurityID 8852 8852 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 58.22 Price on level 3

271 > MDEntrySize 10 Quantity

346 > NumberOfOrders 1 Number of order on this level

1023 > MDPriceLevel 3 Book level

273 > MDEntryTime t4 official time of book entry

 Table 21: MDUpdateAction “Delete Thru”

INDIAINX Market & Reference Data Interfaces Manual V1.1

68

9.4 Trade Volume Reporting (EMDI)

All on-exchange trades executed on the new INDIAINX trading platform are reported via depth

incremental messages. The depth snapshot messages contain statistical information about trades only.

Trades can be identified in the incremental messages when MDEntryType is set to 2 (Trade).

The EMDI only disseminates information about on-exchange trades. OTC trade information is not

disseminated via the market data incremental and market data snapshot feed of the INDIAINX EMDI.

When an order executes against the book at multiple price levels, this is reflected by a matching event

with multiple match steps. Each match step has the trades at one price level and is represented by a

unique MDEntryID (278) and published in the market data.

The field MDEntryID (278) is a unique id on product level for each business day. A synthetic match can

result in more than one trade volume record with the same MDEntryID (278) as shown in use case

3, section 9.5.3 and use case 4, section 9.5.4.

Every match step occurring in the exchange has an identifier in INDIAINX ETI that is provided in the

field FillMatchID (28708) in the Execution Report (8), QuoteEventMatchID (8714) in the Quote

Execution Report (U8) and TrdMatchID (880) in the Trade Capture Report (AE). This identifier allows

participants to link trade capture reports and the corresponding execution report of the INDIAINX ETI

with the market data incremental feed of the INDIAINX EMDI.

The following 4 use cases illustrate the MDEntryID (278) and how Trade Volume Reporting works:

9.4.1 Use case 1: Direct match of simple instruments

An incoming simple order is matched against two orders of the opposite side of the order book on

different price levels.

Incoming buy order, 150@2885, FESX Sep

Existing Order book:

BID ASK

 50@2884 FESX Sep

 100@2885 FESX Sep

INDIAINX Market & Reference Data Interfaces Manual V1.1

69

Trade Volume Reporting: Two trades are reported because two different price levels are involved

in the matching process: First 50@2884 gets reported due to a higher matching priority of this price

level; afterwards 100@2885.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell Total

FESX
Sep

1 NEW 50@2884 U,R,AX,AY BUY 1 1 +50

FESX
Sep

2 NEW 100@2885 U,AX BUY 1 1 +100

with:

U = “Exchange last”

R = “Opening price”

AX = “High price”

AY = “Low price”

AW = “Last auction price”

9.4.2 Use case 2: Direct match of complex instruments

An incoming complex order23 involving 2 legs are matching against the opposite side of the complex

instrument order book.

Incoming buy order, 100@8, FESX Sep/Dec

Existing Order book:

BID ASK

 50@7 Sep/Dec

 100@8 Sep/Dec

Trade Volume Reporting: Only the entire strategy trade is reported and no trade information is

published for the individual legs.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell Total

Sep/Dec 3 NEW 50@7 U,R,AX,AY BUY 1 1 +50

Sep/Dec 4 NEW 100@7 U,AX BUY 1 1 +100

INDIAINX Market & Reference Data Interfaces Manual V1.1

70

23 In general, a complex order is any combination of simple instruments. This example is based on a Future Time Spread.

However,

Use case 3: Complex versus simple order match

A buy spread order as an incoming complex order (Time Spread) matches (synthetically) against several

simple instrument leg orders (outright orders).

Incoming buy order, 200@8.0 FESX Sep/Dec

Existing Order book:

BID ASK

120@2878 Dec

30@2878 Dec

BID ASK

 60@2886.0 Sep

 50@2886.0 Sep

 40@2886.0 Sep

This results in the following implied price:

BID ASK

 Sep12/Dec12
150@8.0

Trade Volume Reporting: The incoming spread order matches against the implied-in order of the order

book which is a composition of all 5 outright orders in the order book. Again, the trades are aggregated

per price level. The fields NumberOfBuyOrders (28821) and NumberOfSellOrders (28822) show how

many orders are involved.

In case of a synthetically matched complex order either the buy or sell side contains an empty value. In

case of a direct matched complex instrument, both sides are filled.

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell Total

Sep/Dec 5 NEW 150@8 U BUY 1 +150

Sep 5 NEW 150@2886 U,AX 3 +150

Dec 5 New 150@2878 U,R,AX,AY 2 +150

INDIAINX Market & Reference Data Interfaces Manual V1.1

71

In case the incoming buy spread order is matching against sell spread orders in the same instrument

(direct matching), only one trade volume reporting record is published. As a general rule, only one trade

volume record is published per match step in case of direct matching (as an example, see section

9.5.2) while there are more than one trade volume reporting record per match step in case of

synthetic matching as described in the example of this section.

9.4.3 Use case 4: Complex versus simple/complex match

Incoming buy order, 250@8, FESX Sep/Dec

Existing Order book:

Bid Ask

120@2878 Dec 150@2886 Sep

30@2878 Dec 100@8 Sep/Dec

Trade Volume Reporting: Incoming complex order is matching directly against the opposite side of

a complex order; another part is matching against an implied-in order which was created by two

existing outright orders for the Sep and Dec contracts. The direct match of the complex orders can be

identified by existing entries for NumberOfBuyOrders (28821), NumberOfSellOrders (28822). The

synthetic match can be identified by the missing entry for NumberOfSellOrders (28822).

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell Total

Sep/Dec 6 NEW 100@8 U BUY 1 1 +100

Sep/Dec 6 NEW 150@8 U Buy 1 +150

Sep 6 New 150@2886 U 1 +150

Dec 6 New 150@2878 U,AY 2 +150

9.4.4 Use case 5: Opening auction

After the uncrossing of the order book in a simple instrument at the end of an auction call phase,

five orders on the buy side and 3 orders on the sell side of the order book have been matched. The

Trade- Condition (277) is set to AW for Auctions. The field TrdType (828) specifies the type of the

auction. For trades outside the auction, TrdType (828) is not set.

Existing Order Book during Auction:

Bid Ask

INDIAINX Market & Reference Data Interfaces Manual V1.1

72

30@24.39 Sep
25@24.39 Sep
20@24.39 Sep
55@24.39 Sep
5@24.39 Sep

60@24.39 Sep
57@24.39 Sep
18@24.39 Sep

Trade Volume Reporting: All orders are matching on the same price level. Therefore they are reported

only once but with different NumberOfBuyOrders (28821) /NumberOfSellOrders (28822) . The

AggressorSide (28731) is left empty because during an auction, orders are not considered to be

aggressive.

The following depth incremental message is sent:

Instr. MDEntryID MDUpdateAction size@prc TradeCond. AggrSide #Buy #Sell Total

Sep 1 New 135@24.39 U,R,AX,AY,AW OPENING 5 3 +135

The following depth snapshots belong to the depth incremental above:

Instr. MDUpdateAction size@prc TradeCond. TrdType Total

Sep New 135@24.39 U,R,AX,AY,AW +135

Sep New 135@24.39 AW OPENING N/A

In the snapshot, the last auction prices are published in dedicated entries for each auction type

separately. Each additional trade from another auction type, adds an entry in the snapshot up to a

maximal number of four entries, one for each type of auction. If an auction trade gets reversed the

respective snapshot entry for the auction trade does not get deleted.

The TradeVolume (1020) is only set if TradeCondition (277) is “U”.

9.5 Trade Volume Reporting (MDI)

The INDIAINX MDI only provides statistical data (daily high/low price as well as total trade volume) for

trades as well as the last traded price and quantity. Other information such as NumberOfBuyOrders

(28821) , NumberOfSellOrders (28822) are not provided.

MDI reports the total volume traded through the respective order book only. This means, for example,

that a direct match of two futures spread orders does not increase the total traded volume of the

involved single leg contracts.

INDIAINX Market & Reference Data Interfaces Manual V1.1

73

9.6 Failure of the market data feed/ matching engine

The following chapters explain fail-over scenarios and how receiving applications need to process them.

9.6.1 Normal processing

At start-up, the system assigns a unique sender identifier, the SenderCompID (49) to each market data

feed. Afterwards the SenderCompID (49) remains constant for a given product during the entire

business day. The SenderCompID (49) as shown in section 7.1 is available in the packet header and in

the data message24, e.g. Depth incremental or depth snapshot itself.

For each incremental and snapshot message sent by market and reference data feeds:

 The field content for SenderCompID (49) in the packet header and in each data message

is always the same.

For each incremental and snapshot message sent by the market data feeds:

 The PacketSeqNum’s in the packet header are contiguous per SenderCompID, multicast

address and port combination.

 The MsgSeqNum’s in the data message are contiguous per product on the incremental

feed of the EMDI.

 The MsgSeqNum’s in the data message are contiguous per product on the market data

feed of the MDI25.

Figure 17 provides an example for constant SenderCompID’s and increasing sequence numbers:

INDIAINX Market & Reference Data Interfaces Manual V1.1

74

24 the content is the same.
25 because the INDIAINX MDI delivers incremental and snapshots on the same channel.

 Figure 17: Normal processing of sequence numbers for the INDIAINX EMDI

9.6.2 Market data feed fail-over (EMDI)

A new SenderCompID, available in the packet header and in each data message for incremental and

snapshots, indicates a fail-over of the market data feed.

Incremental:

 the PacketSeqNum’s in the packet header are reset to 1 and are contiguous per

SenderCompID (80), multicast address and port combination.

 The MsgSeqNum’s in the data message remain contiguous per product.

Snapshots:

INDIAINX Market & Reference Data Interfaces Manual V1.1

75

 the PacketSeqNum’s in the packet header are reset to 1 and are contiguous per

SenderCompID (80), multicast address and port combination.

Figure 18 illustrates the different behavior for incremental and snapshot messages:

 Figure 18: Data feed fail-over for EMDI

9.6.3 Market data feed fail-over (MDI)

Receiving applications are able to identify a failure as follows:

 the PacketSeqNum’s in the packet header are reset to 1 and are contiguous per

SenderCompID(80), multicast address and port combination.

 by a change of the SenderCompID (80) in the packet header and in all suINDIAINXquent

messages.

 by a reset of the MsgSegNum’s for all products to 1.

INDIAINX Market & Reference Data Interfaces Manual V1.1

76

The snapshots are sent for all instruments before the incremental are generated.

Figure 19 illustrates the different behavior for incremental and snapshot messages:

 Figure 19: Data feed fail-over for MDI

Participants can identify this failover scenario by decoding the packet header of UDP datagram and

comparing the SenderCompID value with the previous value.

9.6.4 Market data feed restart (EMDI)

A new SenderCompID, available in the packet header and in each data message for incremental and

snapshots, indicates a failure.

Incrementals:

 the PacketSeqNum’s in the packet header are reset to 1 and are contiguous per

SenderCompID, multicast address and port combination.

INDIAINX Market & Reference Data Interfaces Manual V1.1

77

 the MsgSeqNum’s in the data message is reset to 1 and are contiguous per product for

incrementals.

Snapshots:

 the PacketSeqNum’s in the packet header are reset to 1 and are contiguous per

SenderCompID, multicast address and port combination.

Once this condition is oINDIAINXrved it is safe to assume that a fail-over scenario took place and the

only correct action is to rebuild the order book. The receiving application needs to invalidate its view

of the order book until an explicit message has been received containing new information. This can

either be as a result of a recovery from depth snapshots or from depth incremental messages, as

described in section 6.4.1, Build the initial order book with the EMDI.

9.6.5 Market data feed restart (MDI)

Receiving applications are able to identify a failure as follows:

 by a change of the SenderCompID (80) in the packet header and in all suINDIAINXquent

messages.

 by a reset of the MsgSegNum’s for all products to 1.

The snapshots are sent for all instruments before the incremental are generated.

Once this condition is oINDIAINXrved it is safe to assume that a fail-over scenario took place and the

only correct action is to rebuild the order book. The receiving application needs to invalidate its view

of the order book until an explicit message has been received containing new information. This can

either be as a result of a recovery from depth snapshots or from depth incremental messages, as

described in section 6.4.2, Build the initial order book with the MDI.

9.6.6 Failure of the matching engine

All non-persistent orders and quotes are deleted. Participants can see a product state change as a result

of the market reset. No special processing is necessary for market data applications.

In addition, participants receive a market reset event from their ETI-interface. The service availability

Message indicates the unavailability of the matcher by the ETI-field MatchingEngineStatus (25005).

INDIAINX Market & Reference Data Interfaces Manual V1.1

78

9.7 Trading states for a sample business day

Section 4.2, Trading states introduced the trading state information. This section describes a typical

trading day with the new INDIAINX Exchange Trading Architecture. The examples refer to an equity

product A10O5A and a derivatives product FDAX future on a typical expiry day. The times for each

trading phase are valid for FDAX and A10O5A.

Participants should not rely on any specific order or sequence of messages as described in the following

chapters. For instance, the system could send an instrument state change message instead of a mass

instrument state change message resulting in the same trading state at the participants’ side.

9.7.1 Start-Of-Day

The system startup occurs in the morning. Note that with the INDIAINX New Trading Architecture,

business days are not technically linked to the local calendar. Under normal circumstances a business

date is equal to the local calendar date. Nevertheless it is possible that the system startup and with it

the new business day starts before midnight on the previous calendar day.

At startup, the FDAX, A10O5A product goes into the product state “Start-of-Day”, while all its

instruments are in the state Closed. Traders have no access to the order book.

The system sends a product state change message (FIX TradingSessionStatus (MsgType = h)) with the

field TradingSessionID (336) set to 3 = Morning and the field TradingSessionSubID (625) set to 9 =

Quiescent. This indicates the product state “Start-of-Day”.

The system furthermore sends mass instrument state change message (FIX SecurityMassStatus

(MsgType = CO)) with the field SecurityMassTradingStatus (1679) containing 200 = Closed, which

indicates that all instruments are in the state Closed. This message is sent once for the futures

contracts and equity securities (specified in the field InstrumentScopeProductComplex (1544) containing

1 = Simple Instrument) and once for futures spreads (specified in the field

InstrumentScopeProductComplex (1544) containing 5 = Futures Spread) which is the only complex

instrument type supported for futures.

The reference data feed begins with the system startup. Instruments that are scheduled to expire

during the day are included in the reference data, but instruments that have already expired on a

previous business day are no longer included in the reference data.

INDIAINX Market & Reference Data Interfaces Manual V1.1

79

9.7.2 Pre-Trading

At 7:50 IST, the FDAX, A10O5A product goes into the product state Pre-Trading while all its instruments

change their instrument state to Restricted. Traders have no access to the order book.

The system sends a product state change message with the field TradingSessionID (336) set to 3 =

Morning and the field TradingSessionSubID (625) set to 1 = Pre-Trading. This indicates the product state

Pre-Trading.

The system furthermore sends mass instrument state change message with the field

SecurityMassTradingStatus (1679) containing 201 = Restricted, which says that all instruments are in the

state Restricted. This message is sent once for simple instruments and once for futures spreads.

9.7.3 Trading

At 9:00 IST, the A10O5A product goes into the product state Trading. At the same time, all the simple

instruments belonging to product A10O5A change their instrument state to Opening Auction. For the

simple instruments, the system publishes the best bid and ask prices if the order book is not

crossed, or an indicative auction price if the order book is crossed. Traders can do full order

maintenance.

At 9:15 IST, the FDAX product goes into the product state Trading. At the same time, all the simple

instruments belonging to product A10O5A change their instrument state to Continuous. Traders can do

full order maintenance.

The system sends a product state change message with the field TradingSessionID (336) set to 1 = Day

and the field TradingSessionSubID (625) set to 3 = Trading. This indicates the product state Trading.

For A10O5A product the system furthermore sends one mass instrument state change message with the

field SecurityMassTradingStatus (1679) containing 204 = Opening Auction, which says that all

instruments are in the state opening auction. This message is sent only for simple instruments.

For FDAX product the system furthermore sends one mass instrument state change message with the

field SecurityMassTradingStatus (1679) containing 203 = Continuous, which says that all instruments are

in the state opening auction. This message is sent only for simple instruments.

INDIAINX Market & Reference Data Interfaces Manual V1.1

80

9.7.4 Continuous Trading

At 9:15 IST, the opening auction period of the A10O5A product ends and continuous trading starts.

There is no product state change involved, but all the instruments transition to the instrument state

Continuous. The change of the instrument state implies an auction trade if the order book was crossed.

This applies also to the complex instruments (futures spreads), even though they had no formal auction

call phase before.

In the instrument state Continuous, traders can maintain their orders. Incoming orders are continuously

matched. The system publishes order book and trade data.

The system sends two mass instrument state change messages with the field SecurityMassTradingStatus

(1679) containing 203 = Continuous, which means that all instruments are in the state Continuous. This

message is sent once for simple instruments and once for futures spreads.

9.7.5 Intraday Expiry

At 12:30 IST, the front month contract of the FDAX future expires on an expiration day. The affected

simple instrument goes to the instrument state Restricted. The same happens to all complex

instruments (futures spread) that have the affected simple instrument as a leg. For these instruments,

all quotes are deleted automatically. Traders may delete their orders but not modify them or add new

orders.

For the expired simple instrument, the system sends a instrument state change message (FIX Security-

Status (MsgType = f)) with the field SecurityTradingStatus (326) containing 201 = Restricted, which says

that this particular instrument is in the state Restricted. Furthermore, the field SecurityStatus (965)

contains the value 4 = Expired.

For each impacted complex instrument, the system sends a instrument state change message with the

field SecurityTradingStatus (326) containing 201 = Restricted. However, the field SecurityStatus (965)

still contains the value 1 = Active.

9.7.6 Closing

At 15:30 ISTT, the A10O5A, FDAX product is set into the product state Closing. At the same time, all its

simple instruments (futures contracts) and complex instruments (futures spreads) change their

instrument state to Restricted. Traders can do only order deletion.

The system sends a product state change message with the field TradingSessionID (336) set to 1 = Day

and the field TradingSessionSubID (625) set to 4 = Closing. This indicates the product state closing.

INDIAINX Market & Reference Data Interfaces Manual V1.1

81

For simple and complex instruments, the system sends one mass instrument state change message with

the field Se- curityMassTradingStatus (1679) containing 201 = Restricted. The message carries an

exception list which contains the expired instrument as the only list item. For this instrument, the list

item field SecurityTradingStatus (326) contains 201 = Restricted.

9.7.7 Post Closing

At 15:40 IST, the product A10O5A goes into the product state Post Closing. The simple instruments that

have been in the instrument state restricted now change to the state continuous.

The expired front month contract and the related futures spread instruments are not affected. They

remain in the state Restricted.

The system sends a product state change message with the field TradingSessionID (336) set to 5

=Evening and the field TradingSessionSubID (625) set to 6 = Post Closing. This indicates the product

state: Post Closing.

For simple instruments, the system sends one mass instrument state change message with the field

SecurityMassTradingStatus (1679) containing 203 = Continuous. The message carries an exception list

which contains the expired instrument as the only list item. For this instrument, the list item field

SecurityTradingStatus (326) contains 201 = Restricted.

9.7.8 End-Of-Day

After 16:00 IST, the FDAX product goes into the product state End-Of-Day. All its instruments change

into the instrument state Closed. Traders can no longer access the order book. The exchange system

will start the end-of-day processing.

The system sends a product state change message with the field TradingSessionID (336) set to 5 =

Evening and the field TradingSessionSubID (625) set to 9 = Quiescent. This indicates the product state

End of Day

The system also sends two mass instrument state change messages with the field

SecurityMassTradingStatus (1679) containing 200 = Closed, which means that all instruments are in the

state Closed. This message is sent once for simple instruments and once for future spreads.

INDIAINX Market & Reference Data Interfaces Manual V1.1

82

10 Fine tuning client applications

This chapter covers some aspects of application tuning which should be considered during the design

process of receiving applications.

10.1 Buffer size

Messages need to be buffered and sorted in order to deal with datagram arriving in reversed order. A

bigger buffer size usually slows down the processing of messages and should therefore be avoided.

Conversely, receiving applications might falsely declare a message as lost if the buffer size is too small.

As you can see from this example, a bigger buffer size works contrary to the speed of an application but

reduces the chances of “lost” messages.

Another factor which affects the ideal buffer size is the ratio of joined multicast streams to available

band- width of a Market Data connection. A connection which operates at high network utilization levels

might more often cause multicast drops or packets arriving in an incorrect sequence.

Last but not least, the location of the receiving application also matters. For instance, an application

running in co-location has very few out-of-order multicast packets (none in most cases) while an

application which is located at a far distance from the INDIAINX host receives a few packets out-of-

order.

Therefore a general recommendation concerning the buffer size cannot be made. Developers need to

determine the ideal buffer size during internal testing. Please take into account that the message rate

for the public broadcast is usually much lower in the simulation environment than it is in production.

10.2 Packet and message processing

It is important that messages are removed from the network in a timely fashion to prevent them from

being dropped by the client machine due to "receive buffer" overflow in the IP stack. In addition to the

removal of messages from the network stack (as might be performed in response to a select()

operation, for example), this design requires a time-based component to determine when a missing

packet is declared lost (as opposed to simply delayed).

The mechanism behind this is an implementation detail, and is platform-specific, but in its simplest form

a timed select () and polling of an internal list of overdue packets would suffice.

The actual time out value applied is very implementation-specific, and may be either determined

dynamically (with a knowledge of when the first overdue packet is declared lost) or a simple static value.

 Note: Depth incremental messages must not be applied to the order book unless they are in

sequence.

INDIAINX Market & Reference Data Interfaces Manual V1.1

83

For each network packet received, decode it into the constituent FIX message and then for each

message:

The market data feeds may contain information about multiple products. If it is not for a product that

the client’s application is interested in:

 Throw it away.

If the message is already in the cache:

 The client’s application already received this message from the mirror channel, or it has

been duplicated in the network.

 Throw it away.

Otherwise:

 Add it to the cache.

10.3 Application level

Various approaches can lead to faster processing on application level. The approaches depend primarily

on the purpose and algorithm of the application.

10.3.1 Discarding duplicate packets within the live-live environment

It is expected that receiving applications process packets from Service A and B simultaneously. The

concept of the packet header allows receiving applications to detect duplicates based on the

PacketSeqNum. It is recommended to discard a packet after decoding the packet header once it has

been identified as duplicate. The actual message following the packet header no longer has to be

decoded, allowing a faster processing speed.

10.3.2 Order book processing

Depth incremental messages deliver changes of the order book from ToB to worse price levels. Trading

algorithms which are based on fast matching without the knowledge of the order book could process

ToB only before making a decision and process the order book afterwards.

INDIAINX Market & Reference Data Interfaces Manual V1.1

84

Conversely, trading algorithms with a matching logic based on the knowledge of the order book need to

process the order book before sending orders.

10.3.3 Optimal processing of desired products (EMDI)

Receiving applications interested in certain products need to join a multicast address which contains the

desired products according to the mapping table provide in the reference data. Packets may arrive from

different partitions on the same multicast address as shown in figure 20. The PartitionID in the packet

header for the INDIAINX EMDI can be used to identify packets arriving from partitions which carry the

desired products. All other packets can be easily discarded without decoding the entire message.

Figure 20: Discarding packets with unwanted products based on the PartitionID of the INDIAINX EMDI

packet header

The example provided in figure 20 shows two products arriving on multicast address 224.0.50.27. The

participant is only interested in product A. Packets containing product A or product X can be

identified by the field PartitionID in the packet header. As product X is not one of the desired products

it can be discarded after decoding the message.

Based on the reference data, the receiving application knows that packets coming from PartitionID

2 contain only undesired products. It discards all packets with PartitionID = 2 in the packet header

without decoding message 1.

INDIAINX Market & Reference Data Interfaces Manual V1.1

85

Part III

Reference

11 Detailed data feed description and layout

This chapter provides message layouts and field information. It is structured by service messages, data

messages and data files.

11.1 Service messages

Service messages do not carry any market information. These messages are sent for the purpose of

synchronization or to indicate the status of the service.

11.1.1 FAST reset message

The template with ID = 120 is not included in the “FAST Message Templates” file. This TID is reserved in

the main FAST specification and allocated by the FAST Session Control Protocol specification (SCP 1.126)

11.1.2 Packet header (EMDI)

Delivered in: Every UDP-datagram

The packet header is a technical header used for identification of datagrams and is sent on a channel

basis. Every partition stamps outgoing datagram with a sequence number (field: PacketSeqNum).

One method to identify duplicates between Service A and B is by the use of the field PacketSeqNum

which is unique per senderCompID; a faster way is to perform a memory comparison on the first 9

bytes of the packet header.

Note: A conforming decoder must be able to deal with the FAST reset message even though it is

not mentioned in the template file. Once the FAST reset message is sent out, the dictionary needs

to be initialized.

INDIAINX Market & Reference Data Interfaces Manual V1.1

86

This method eliminates the need to even decode the header in order to determine, if it has already been

processed. This is especially useful to applications using both Service A and Service B feeds, allowing

__

26 www.fixprotocol.org/fast > FAST Session Control Protocol

them to determine that a packet has already been processed without incurring any decoding overhead

at all. As the packet header message is not defined in the FIX standard, the FIX Tags for

PacketSeqNumber, SendingTime and PerformanceIndicator are not shown in the table below. The

following layout is available after FAST decoding of the packet header:

Field Name Data Type Description

PartitionID uInt32 Sending partition.

SenderCompID uInt32 Unique id for a sender.

PacketSeqNumber byte vector Datagram sequence number.

SendingTime byte vector Time when market data feed
handler writes packet on the
wire.

PerformanceIndicator byte vector Current load of system. Time
difference between the
incoming ETI- order/quote and
the time the market data is
written to the socket. This
information is provided for the
incremental feed of EMDI only
and is not provided for the MDI.

The following picture shows the structure of the packet header before FAST-decoding:

 Figure 21: Structure of the packet header for INDIAINX EMDI

The last three fields are byte vectors with fixed length. Byte vectors are not stop bit encoded according

to the FAST standard. Each of them is preceded by a FAST encoded 1 Byte length field as per the FAST

specification for byte vector fields.

Note: The field PerformanceIndicator including the length field is only available in messages on

the INDIAINX EMDI incremental feed. The PartitionID is available in messages on both

incremental and snapshot feed of the EMDI.

INDIAINX Market & Reference Data Interfaces Manual V1.1

87

11.1.3 Packet header (MDI / RDI)

Delivered in: every UDP-datagram

The packet header of INDIAINX MDI and INDIAINX RDI doesn’t contain the PerformanceIndicator

with length field and the PartitionID. The rest of the packet header is identical to EMDI. Duplicates

between Service A and Service B can be detected by a memory comparison on the first 8 bytes of the

packet header.

Field Name Data Type Description

SenderCompID uInt32 Unique id for a sender.

PacketSeqNumber byte vector Datagram sequence number.

SendingTime byte vector Time when market data feed
handler writes packet on the
wire.

Wire representation:

 Figure 22: Structure of the packet header for MDI and RDI

11.1.4 Functional beacon message

Delivered on: EMDI incremental only

The functional beacon message is sent as a “line active” indicator whenever there are no messages

generated on the EMDI incremental feed for the respective product within the last 10 seconds in

production.

Functional beacons are sent once the market data service becomes available. If no messages have been

sent on the incremental feed for a product then LastMsgSeqNumProcessed (369) is set to zero.

INDIAINX Market & Reference Data Interfaces Manual V1.1

88

Tag Field Name Req’d Data Type Description

35 MsgType Y String

Value Description

0 Beacon

49 SenderCompID Y uInt32 Unique id of a
sender.

50 SenderSubID Y uInt32 Product Identifier,
e.g. 89.

369 LastMsgSeqNumProcessed Y uInt32 Last sequence

number on the

incremental feed for

this product.

11.1.5 Technical heartbeat message

Delivered on: every channel for EMDI, MDI and RDI

The technical heartbeat message is sent out periodically on every multicast address and consists of a

FAST reset message (TID=120) only. The sole purpose of the technical heartbeat message is to keep

routing trees alive, i.e. this message prevents routers from dropping multicast packages.

11.1.6 Market data report message

Delivered on: INDIAINX RDI snapshot feed

The number of reference data could be large, and it might take some time to complete one snapshot

cycle. In order to mark the beginning of the reference data messages, the market data report message is

sent with a start- and end-flag indicated by the field MDReportEvent (8827). The fields MDCount (34)

and LastMsgSeqNumProcessed (369) allow determining the number of snapshots and incrementals

within the reference data snapshot feed. For further details see section 9.2.2, Counters as part of the

market data report message, on page 43.

Tag Field Name Req’d Data Type Description

35 MsgType Y String

Value Description

0 Beacon

5468 MDCount N uInt32 Number of reference

data snapshot messages in

INDIAINX Market & Reference Data Interfaces Manual V1.1

89

the snapshot cycle of the

current business day.

Only sent for

MDReportEvent = 1, i.e. at

the start of the cycle.

369 LastMsgSeqNumProcessed N uInt32 MDCount value of the

last reference data

message (snapshot or

incremental) at the end

of the snapshot cycle

(products and instruments

share a single sequence).

Number of incremental

updates in snapshot cycle

can be calculated as

LastSeqNumProcessed -

MDCount.

Only sent for

MDReportEvent = 1, i.e. at

the start of the cycle.

28827 MDReportEvent Y MDReport-
Event (enum)

Defines start/end of

reference data.

Value Description

1 StartofRefernce

Data

2 EndOfReference

Data

60 TransactTime Y Timestamp Creation time of the

snapshot.

28825 TotNoMarketSegments N uInt32 Contains the number of

product messages sent in

the snapshot.

Only send for

MDReportEvent = 1.

28826 TotNoInstruments N uInt32 Contains the number of

instrument messages sent

in the snapshot.

Only sent for

INDIAINX Market & Reference Data Interfaces Manual V1.1

90

MDReportEvent = 1.

11.2 Reference data messages

Reference data is delivered via the snapshot and incremental feeds with the INDIAINX RDI. A product

incremental message does not exist in this release.

11.2.1 Product snapshot message

Delivered on: INDIAINX RDI snapshot feed

The product snapshot message sends the collapsed view of the market, market segment and product. It

provides the dynamic multicast addresses/ports for each type (field: MDFeedType (1022)) of the

reference data feed (instrument snapshot, instrument incremental)

Tag Field Name Req’d Data
Type

Description

35 MsgType Y Strin

g

Reference data snapshot (one per product).

Value Description

BU Market Definition

34 MsgSeqNum Y uInt3

2

Contiguous across all messages on the reference

data snapshot feed regardless of message type.

See figure 9 chapters 9.2.1,

General structure of the snapshot cycle.

1301 MarketID Y strin

g

Market Identifier Code as specified in ISO 10383.

1300 MarketSegmentID Y uInt3

2

Product identifier, e.g. “89”.

75 TradeDate Y uInt3

2

Current business date, e.g. “20131128”.

7703 MarketSegment Y strin

g

Product name, e.g. “FDAX”.

1396 MarketSegmentDesc Y strin Product Description, e.g. “OPT ON THE DAX

INDIAINX Market & Reference Data Interfaces Manual V1.1

91

Tag Field Name Req’d Data
Type

Description

g INDEX”.

7177 MarketSegmentSymbol Y strin

g

Product ISIN, e.g. “DE0009653147”.

1325 ParentMktSegmID Y strin

g

Standard INDIAINX product types, e.g. “FINX”.

15 Currency Y strin

g

Currency as published in ISO 4217

28599 MarketSegmentStatus Y MDS

tatus
27

(enu

m)

Defines if on-exchange trading on the new

trading architecture is available for a product

(=Active) or not (=Published). Reason for a

published product can be for the following

reasons: a) The product is still traded on the

current "INDIAINX platform prior to migration,

b) First trading day of the new product has not

yet been reached, or c) the product is setup on

the current "INDIAINX platform for OTC

trading with no intention for on-exchange

trading.

Value Description

1 Active

10 Published

9543 USFirmFlag Y USFir

m-

Flag

(enu

m)

Flag to identify whether product may be traded

from the USA.

Value Description

N No

Y Yes

5948 PartitionID Y uInt3

2

Partition of the product.

6426 UnderlyingSecurity N strin

g

Underlying security symbol, e.g. “DAX”.

5336 UnderlyingID N strin

g

ISIN code of the underlying, e.g.

“DE0008469008”.

9939 UnderlyingLastPx N deci Closing price of the underlying on the previous

INDIAINX Market & Reference Data Interfaces Manual V1.1

92

Tag Field Name Req’d Data
Type

Description

mal day.

28700 RefMarketSegmentID N uInt3

2

ID of the product required to refer while creating

volatility strategy.

28814 QuoteSideIndicator Y Quot

eSide

-

Indic

ator

(enu

m)

Defines if one sided quotes are allowed.

Value Description

0 OneSidedQuoteNotAllowed

1 OneSidedQuoteAllowed

28833 FastMarketPercentage N deci

mal

Percentage by which range resulting from

PriceRangeValue (28808) and

PriceRangePercentage (28809) has to be

extended to obtain the valid price range during

Fast Market:

0 = no change to normal range, e.g. 80->80

50 = increase by half, e.g. 80->120

100 = range to be doubled, e.g. 80->160

<TickRules> sequence starts

1205 NoTickRules Y length Number of tick rules defining the price step table

for the product.

28823 >TickRuleProduct

Complex

Y Product-

Complex

(enum)

Defines the instrument type for the tick rule.

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

1206 >StartTickPriceRa

nge

Y decimal Starting price range for specified tick increment

(inclusive).

1207 >

EndTickPriceRang

e

Y decimal Ending price range for the specified tick

increment (non- inclusive).

INDIAINX Market & Reference Data Interfaces Manual V1.1

93

Tag Field Name Req’d Data
Type

Description

1208 > TickIncrement Y decimal Tick increment for stated price range. Specifies

the valid price increments at which instrument of

the product can be quoted and traded.

<TickRules> sequence ends

<MatchRules> sequence starts

1235 NoMatchRules Y length Used to convey allocation rules for matching

28824 >

MatchRuleProduc

t- Complex

Y Product-

Complex

(enum)

Indicates the instrument type.

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

1142 > MatchAlgorithm Y Match-

Algorithm

(enum)

Defines the order allocation method.

Value Description

PT PriceTime

PR ProRata

TPR TimeProRata

574 > MatchType N MatchType

(enum)

If MatchType is not filled the same matching

algorithm is used for continuous trading and

auction trades.

AutoMatch stands for continuous trading and

CallAuction for auction trades.

Value Description

4 AutoMatch

7 CallAuction

<MatchRules> sequence ends

<QuoteSizeRules> sequence starts

28829 NoQuoteSizeRules N length

647 > MinBidSize N uInt32 Minimum bid quantity (identical to minimum

offer quantity).

648 > MinOfferSize N uInt32 Minimum offer quantity (identical to minimum

INDIAINX Market & Reference Data Interfaces Manual V1.1

94

Tag Field Name Req’d Data
Type

Description

bid quantity).

28828 >

FastMarketIndicat

or

N FastMarket

- Indicator

(enum)

Indicates if product is in the state Fast Market.

Value Description

0 No

1 Yes

<QuoteSizeRules> sequence ends

<FlexRules> sequence starts

28830 NoFlexProductElig

ibilities

N length

28831 >

FlexProductEligibil

ity- Complex

Y Product-

Complex

(enum)

Defines the strategy types available for user

defined strategies.

Value Description

1 Simple Instrument

2 StandardOptionStrate

gy

3 NonStandardOptionSt

rategy

4 VolatilityStrategy

5 FuturesSpread

1242 >

FlexProductEligibil

ityIndi- cator

Y Flex-

Product-

Eligibility-

Indicator

(enum)

Defines if user defined strategies are allowed.

Value Description

N No

Y Yes

<FlexRules> sequence ends

<Feeds> sequence starts

1141 NoMDFeedTypes Y length Number of feeds.

1022 > MDFeedType Y MDFeed-

Type

(enum)

Type of feed.

Value Description

HI HighIncremental (unnetted

feed)

HS HighSnapshot (unnetted feed)

INDIAINX Market & Reference Data Interfaces Manual V1.1

95

Tag Field Name Req’d Data
Type

Description

L Low (netted feed)

1021 > MDBookType Y String

Value Description

2 Price Depth

264 > MarketDepth N uInt32 Maximum number of price levels for the product.

28850 >MarketDepthTim

eInterval

N uInt32 Netting interval for low bandwidth feeds (0=no

netting).

28851 >
MDRecoveryTimeI
nterval

N uInt32 Recovery interval (duration of one cycle)

28590 >

MDPrimaryFeedLi

neID

Y string IP Address for Service A.

28591 >

MDPrimaryFeedLi

neSubID

Y uInt32 Port number for IP address Service A.

28592 >

MDSecondaryFee

dLineID

N string IP Address Service B.

28593 >

MDSecondaryFee

dLine- SubID

N uInt32 Port number for IP address Service B.

<Feeds> sequence ends

<PriceRangeRules> sequence starts

28805 NoPriceRangeRule

s

Y length Price Range Tables.

28806 >

PriceRangeRuleID

Y uInt32 Table identifier.

28810 >

PriceRangeProduc

tCom- plex

Y Product-

Complex

(enum)

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

INDIAINX Market & Reference Data Interfaces Manual V1.1

96

Tag Field Name Req’d Data
Type

Description

28812 > StartPriceRange Y decimal Start of price range (inclusive).

28813 > EndPriceRange Y decimal End of price range (non-inclusive).

28808 > PriceRangeValue N decimal Maximum allowable quote spread (absolute

value). Conditionally required if

PriceRangePercentage is aINDIAINXnt.

28809 >

PriceRangePercen

tage

N decimal Maximum allowable quote spread (percentage

value). Condition- ally required if

PriceRangeValue is aINDIAINXnt.

<PriceRangeRules> sequence ends

27 The actual wire format for "Published” is 3 as MDStatus has 4 values defined in the FAST 1.2 XML files.

11.2.2 Instrument snapshot message

Delivered on: INDIAINX RDI snapshot feed

The instrument snapshot message is used to describe both simple and complex instruments. For

complex instrument the LegSecurityID (602) is the SecurityID (48) of the instrument which is part of the

complex instrument.

A link to reference information for INDIAINX classic is provided with the field SecurityAltID (455).

One message per instrument is sent.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y String

Value Description

d Securitydefinition

34 MsgSeqNum Y uInt32 Contiguous across all messages on the reference

data snapshot feed regardless of message type.

See figure 9 chapter 9.2.1,

General structure of the snapshot cycle.

48 SecurityID Y Int64 The instrument identifier uniquely identifies an

instrument, e.g.72057800196358145.

22 SecurityIDSource Y String

Value Description

M Market Place Assigned Identifier

<SecurityAlt> (optional) sequence starts

INDIAINX Market & Reference Data Interfaces Manual V1.1

97

Tag Field Name Req’d Data
Type

Description

454 NoSecurityAltID N length

455 > SecurityAltID N uInt64 Contract ID from the INDIAINX Legacy System (4

Bytes).

456 >SecurityAltIDSour

ce

N String

Value Description

M Market Place Assigned Identifier

<SecurityAlt> (optional) sequence ends

167 SecurityType Y Security-

Type

(enum)

Type of security.

Value Description

OPT Option

FUT Future

MLEG MultiLegInstrument

762 SecuritySubType N uInt32 Standard strategy type for complex instruments,

e.g. BER-C.

1227 ProductComplex Y Product-

Complex

(enum)

Type of instrument.

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

207 SecurityExchange N string MIC (ISO 10383), used to identify an instrument

of a co-operation partner.

<SimpleInstrumentDescriptor> (optional) group starts

541 MaturityDate N uInt32 Actual expiration day of the instrument

(YYYYMMDD).

200 MaturityMonthYea

r

N uInt32 Expiration month (YYYYMM).

202 StrikePrice N decimal Strike price, e.g. 52.00.

28836 StrikePricePrecisio

n

N uInt32 Exercise Price Decimals.

28835 PricePrecision N uInt32 Display decimals.

INDIAINX Market & Reference Data Interfaces Manual V1.1

98

Tag Field Name Req’d Data
Type

Description

231 ContractMultiplier N decimal Contract size, e.g. 100.

201 PutOrCall N PutOrCall

(enum)

Defines if instrument is a put or call.

Value Description

0 Put

1 Call

206 OptAttribute N string Version of an option. Version can change as a

result of corporate actions or events.

1194 ExerciseStyle N Exercise-

Style

(enum)

Style family of an option.

Value Description

N No

Y Yes

28832 OrigStrikePrice N decimal Original strike price prior to corporate action, e.g.

5.20.

25100 ContractGeneratio

nNumber

N string Contract generation.

28838 LowExercisePriceO

ptionIndicator

N LepoFlag

(enum)

LEPO Flag

Value Description

N No

Y Yes

28837 BlockTradeEligibilit

yIndicator

Y BlkTrdFlag

(enum)

Block trade flag

Value Description

N No

Y Yes

1197 ValuationMethod Y Valuation-

Method

(enum)

Traditional or futures margin style

Value Description

EQTY PremiumStyle

FUT FuturesStyleMarkToMarket

1193 SettlMethod Y Settl-

Method

Settlement type

INDIAINX Market & Reference Data Interfaces Manual V1.1

99

Tag Field Name Req’d Data
Type

Description

(enum)

Value Description

C Cash

P Physical

28834 SettlSubMethod N Settl-

SubMetho

d

(enum)

Physical settlement type

Value Description

1 Shares

2 Derivatives

3 PaymentVsPayment

4 Notional

5 Cascade

99 Other

<Events> (optional) group starts

864 NoEvents N length

865 > EventType N uInt32

Value Description

7 Last Eligible Trade Date

866 > EventDate N uInt32

<Events> (optional) group ends

<SimpleInstrumentDescriptor> (optional) group ends

<ComplexInstrumentDescriptorGroup> (optional) group starts

60 TransactTime N timestamp Creation time of complex instruments. This field

is empty for deletions of complex instruments.

107 SecurityDesc Y string The format depends on the type of instrument:

Standard options strategies:

PROD.O.YYMMDD.IST.SEQ-NO

Non-standard options strategies:

PROD.N.YYMMDD.SEQ-NO

Options volatility strategies:

PROD.V.YYMMDD.IST.SEQ-NO

Future spreads: PROD.S.MONYY.MONYY

<InstrmtLegGrp> sequence starts

555 NoLegs N length

602 > LegSecurityID Y uInt64 Instrument identifier of the leg security.

INDIAINX Market & Reference Data Interfaces Manual V1.1

100

Tag Field Name Req’d Data
Type

Description

603 >

LegSecurityIDSourc

e

Y String

Value Description

M Market Place assigned

identifier

624 > LegSide Y LegSide

(enum)

Value Description

1 Buy

2 Sell

623 > LegRatioQty N uInt32 The ratio of quantity for this individual leg relative

to the entire multileg security.

The quantity for the leg of an order can be

calculated as Leg-RatioQty(623) X OrderQty(38,

ETI) = the Leg quantity.

566 > LegPrice N decimal Price for the leg instrument. Used for the

underlying leg of a Volatility Strategy.

<InstrmtLegGrp> sequence ends

<ComplexInstrumentDescriptor> (optional) group ends

969 MinPriceIncrement Y decimal Defines the minimum increment for trade prices

in ticks (tick size).

This value is identical for all instruments of a

product.

1146 MinPriceIncrement

Amount

Y decimal Defines the minimum price movement in the

respective currency (tick value).

This value is identical for all instruments of a

product.

965 SecurityStatus Y MDStatus

(enum)28

Defines if product is still traded on "INDIAINX

classic (=Published) or on NTA (=Active).

Instruments may also be published prior to

becoming active for trading.

Status is identical to the product level, i.e. all

instruments of a product are either published or

active. Active instruments can expire or be

suspended which is conveyed with the same field

but only within intraday state change messages

(EMDI or MDI).

Value Description

INDIAINX Market & Reference Data Interfaces Manual V1.1

101

Tag Field Name Req’d Data
Type

Description

1 Active

2 Inactive

4 Expired

9 Suspended

10 Published

28816 PrevAdjustedOpenI

nterest

N uInt64 Previous day’s adjusted open interest.

28817 PrevUnadjustedOp

enInterest

N uInt64 Previous day’s unadjusted open interest.

28818 PrevSettlPx N decimal Previous day’s settlement price.

140 PrevClosePx N decimal Previous day’s closing price. The field PrevClosePx

is currently not populated.

<MarketSegmentGrp> sequence starts

1310 NoMarketSegments Y length Always “1”.

1300 > MarketSegmentID Y uInt32 Product identifier, e.g. 89.

1144 >

ImpliedMarketIndica

tor

N Implied-

Market-

Indicator

(enum)

Defines the matching method.

Value Description

0 NotImplied

3 BothImpliedInAndImpliedOut

1377 > MultilegModel N Multileg-

Model

(enum)

Defines if instrument is predefined by the

exchange (=0) or user defined (=1). User defined

instruments are deleted at the end of the day if

the order book is empty.

Value Description

0 PredefinedMultilegSecurity

1 UserDefinedMultilegSecurity

><PriceRangeRules> (optional) sequence starts

28805 > NoPriceRangeRules Y length Only one table allowed.

28806 > >

PriceRangeRuleID

Y uInt32

<MarketSegmentGrp> sequence ends

><PriceRangeRules> (optional) sequence ends

28The actual wire format for "Published" is 3 as MDStatus has 4 values defined in the FAST 1.2 XML files.

INDIAINX Market & Reference Data Interfaces Manual V1.1

102

11.2.3 Instrument incremental message

Delivered on: INDIAINX RDI incremental feed, INDIAINX RDI snapshot feed

The instrument incremental message is used to report additions or deletions of complex instruments to

the reference data.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y string

Value Description

BP SecurityDefinitionUpdateReport

980

SecurityUpdateAction

Y Security-

string

Intraday creation or deletion of complex

instruments.

Value Description

A Add

Note: All fields from the Instrument snapshot message are also part of the message.

On the INDIAINX RDI incremental feed: The MsgSeqNum (34) starts with 1 and

increments by 1 for each message.

On the INDIAINX RDI snapshot feed: The MsgSeqNum (34) is contiguous across all

messages regardless of message type. See figure 9 chapter 9.2.1, General structure of

the snapshot cycle.

INDIAINX Market & Reference Data Interfaces Manual V1.1

103

11.3 Market data messages

The market data feeds disperse public market data via the INDIAINX EMDI and the INDIAINX MDI. The

exchange is able to define the contents of the feeds, the multicast addresses, format of the feed and

map exchange offered messages to the feeds.

Public market data for all instruments is distributed over preconfigured multicast addresses. It is

possible to configure multiple instruments over one multicast address and the depth of information to

be disseminated can be configured on a per product basis. The multicast addresses and port

combinations are different for the INDIAINX EMDI and the INDIAINX MDI.

Two different messages are used for order book updates: The depth incremental is sent if the order

book changes (driven by an order book event). Conversely, the depth snapshot is sent in certain

intervals independent from any change in the order book (time driven).

The message layout for the INDIAINX EMDI and INDIAINX MDI is the same.

11.3.1 Depth snapshot message

Delivered on: INDIAINX EMDI snapshot feed, INDIAINX MDI data feed

This message provides periodic updates for orders and trades independent from any change of the

order book. Updates are available up to the maximum depth defined by the exchange in the field

MarketDepth (264). The Snapshot can be synchronized with the incremental message as described in

chapter 6.5, Update the order book. One message per instrument with pre and post trade data is sent.

An empty book is disseminated during the product states as indicated in chapter 9.3, General order

book rules and mechanics, bullet 5.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y String

Value Description

W MarketDataSnapshotFullRefresh

34 MsgSeqNum N uInt32 Not used by unnetted feed (EMDI) where

field is never present. The sequence

number of the message is incremented per

product across all message types.

49 SenderCompID Y uInt32 Unique id of a sender.

369 LastMsgSeqNumProcessed N uInt32 Not used by netted feed (MDI) where field

is never present. Last message sequence

INDIAINX Market & Reference Data Interfaces Manual V1.1

104

Tag Field Name Req’d Data
Type

Description

number sent regardless of message type.

1187 RefreshIndicator N Refresh-

Indicator

(enum)

Used by netted feed (MDI) only. If set then

the depth snapshot information has not

been sent with the depth incremental

before.

Value Description

Y MandatoryRefresh

N OptionalRefresh

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

48 SecurityID Y Int64 Instrument identifier, e.g. "8852".

22 SecurityIDSource Y String Source Identification.

Value Description

M Marketplace-assigned

Identifier

1227 ProductComplex Y uInt32 The instrument type

Value Description

1 Simple Instrument

2 Standard Option Strategy

3 Non Standard Option Strategy

4 Volatility Strategy

5 Futures Spread

965 SecurityStatus Y MDStatus

(enum)

Status of the instrument.

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

10 Published

134 BidSize N Int64 Total bid size of specified instrument.

135 OfferSize N Int64 Total offer size of specified instrument.

779 LastUpdateTime Y timestamp Time of last change for SecurityID

(nanoseconds).

INDIAINX Market & Reference Data Interfaces Manual V1.1

105

Tag Field Name Req’d Data
Type

Description

This can be any trade, change of the order

book on any price level, or also a product

or instrument state change information

conveyed in this message.

<MDSshGrp> sequence starts

268 NoMDEntries Y length

269 > MDEntryType Y MDEntry-

Type

(enum)

Q = “auction clearing price” is sent as

indicative information during the auction.

J = Empty Book is sent during product

states “Start-Of-Day”,“Pre-Trading”, “Post-

Trading” and “End-Of-Day” when no price

levels exist.

Value Description

0 Bid

1 Offer

2 Trade

7 Upper Circuit Limit

8 Lower Circuit Limit

J EmptyBook

Q AuctionClearingPrice

6 SettlementPrice

C OpenInterest

W BlockDealReferencePrice

828 > TrdType N TrdType29

(enum)

Defines when the trade happens.

Only present for MDEntryType=2 and

TradeCondition=AW.

Value Description

1 BlockTrade29

2 EFP29

12 ExchangeForSwap29

55 ExchangeBasisFacility 29

1000 VolaTrade29

1001 EFPFinTrade29

1002 EFPIndexFuturesTrade30

1100 OpeningAuctionTrade

INDIAINX Market & Reference Data Interfaces Manual V1.1

106

Tag Field Name Req’d Data
Type

Description

1101 IntradayAuctionTrade

1102 VolatilityAuctionTrade

1103 ClosingAuctionTrade

336 > TradingSessionID N Trading-

SessionID

(enum)

Attached to MDEntryType 2=Trade and

TradeCondition U=Exchange Last unless

there has been no trade so far.In this case

it is attached to book information which

can simply be Q=Auction Clearing Price or

all bids and offers for the currently visible

depth (uncrossed book).

If there are no trades and no book

information then it is attached to J=Empty

Book.

Value Description

1 Day

3 Morning

5 Evening

7 Holiday

625 > TradingSessionSubID N Trading-

Session-

SubID

(enum)

See description for TradingSessionID.

Value Description

1 PreTrading

3 Trading

4 Closing

5 PostTrading

9 Quiescent

28828 > FastMarketIndicator N Fast-

Market-

Indicator

(enum)

See description for TradingSessionID.

Value Description

0 No

1 Yes

326 > SecurityTradingStatus N Security-

Trading-

See description for TradingSessionID.

INDIAINX Market & Reference Data Interfaces Manual V1.1

107

Tag Field Name Req’d Data
Type

Description

Status

(enum)

Value Description

200 Closed

201 Restricted

202 Book

203 Continuous

204 OpeningAuction

205 OpeningAuctionFreeze

206 IntradayAuction

207 IntradayAuctionFreeze

208 CircuitBreakerAuction

209 CircuitBreakerAuctionFreeze

210 ClosingAuction

211 ClosingAuctionFreeze

277 > TradeCondition N Trade-

Condition

(set)

AW is not be combined with any other

value and have its own entry in order to

convey the auction type through TrdType.

Instrument state already changed to

continuous when the auction trade is

reported.

Value Description

U ExchangeLast

R OpeningPrice

AX HighPrice

AY LowPrice

AJ OfficialClosingPrice

AW LastAuctionPrice

k Out of sequence

AN PreviousClosePrice

270 > MDEntryPx N decimal Price.

236 >Yield N decimal Yield to maturity

30630 >PutYield N decimal Yield to Put

30631 >CallYield N decimal Yield to Call

271 > MDEntrySize N uInt32 Quantity.

346 > NumberOfOrders N uInt32

1023 > MDPriceLevel N uInt32 Book level. AINDIAINXnt for implied

bid/offer prices.

INDIAINX Market & Reference Data Interfaces Manual V1.1

108

Tag Field Name Req’d Data
Type

Description

273 > MDEntryTime N timestamp Time of entry (nanoseconds) for last trade

entry only (Trade-Condition="U").

Statistics do not have an official timestamp

in the snapshot, even if they happen to be

identical to the last trade and be part of

the same entry.

1020 > TradeVolume N uInt64 Cumulative volume of units traded in the

day.

Only sent for MDEntryType 2=Trade.

381 > GrossTradeAmt N decimal The total Traded value for the security

 Trade Value = Quantity * Rate * lot

897 > NoTrades N uInt32 Total number of trades.

<MDSshGrp> sequence end

--

29 The values 1, 2, 12, 55, 1000, 1001, 1002 are OTC related and are therefore never sent in INDIAINX EMDI/MDI.

11.3.2 Depth incremental message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

This message provides order book updates and trades. Order book updates are available during Trading

and Fast Trading states.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y String

Value Description

X MarketDataIncremental

Refresh

34

MsgSeqNum N uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

<MDSshGrp> sequence starts

268 NoMDEntries Y length

INDIAINX Market & Reference Data Interfaces Manual V1.1

109

Tag Field Name Req’d Data
Type

Description

279 > MDUpdateAction Y MDUpdate-

Action

(enum)

Value Description

0 New

1 Change

2 Delete

3 DeleteThru

4 DeleteFrom

5 Overlay

269 > MDEntryType Y MDEntry-

Type

(enum)

Value Description

0 Bid

1 Offer

2 Trade

7 Upper Circuit Limit

8 Lower Circuit Limit

J EmptyBook

Q AuctionClearingPrice

6 SettlementPrice

C OpenInterest

W BlockDelaReferencePrice

48 > SecurityID Y Int64 Instrument identifier, e.g. "8852".

22 > SecurityIDSource Y String

Source Identification

Value Description

M Marketplace-assigned

Identifier

270 > MDEntryPx N decimal Price of market data (trade or order).

236 >Yield N decimal Yield to maturity

30630 >PutYield N decimal Yield to Put

30631 >CallYield N decimal Yield to Call

271 > MDEntrySize N uInt32 N Quantity of market data (trade or

order).

346 > NumberOfOrders N uInt32

1023 > MDPriceLevel N uInt32 Book level. AINDIAINXnt for implied

bid/offer prices.

134 > BidSize N Int64 Total bid size of specified instrument.

INDIAINX Market & Reference Data Interfaces Manual V1.1

110

Tag Field Name Req’d Data
Type

Description

135 > OfferSize N Int64 Total offer size of specified instrument.

273 > MDEntryTime N timestamp For bids and offers the official time of

book entry, for trades official time of

execution (all in nanoseconds).

<TradeEntryGrp> (optional) group starts

828 > TrdType N TrdType30

(enum)

Defines when the trade happens.

Only presents for MDEntryType=2 and

TradeCondition=AW.

For trades outside the auctions, this

field is not set.

Value Description

1 BlockTrade30

2 EFP30

12 ExchangeForSwap30

55 ExchangeBasisFacility 30

1000 VolaTrade30

1001 EFPFinTrade30

1002 EFPIndexFuturesTrade30

1100 OpeningAuctionTrade

1101 IntradayAuctionTrade

1102 VolatilityAuctionTrade

1103 ClosingAuctionTrade

1020 > TradeVolume N uInt64

277 > TradeCondition N Trade-

Condition

(set)

Defines the type of price for MDEntryPx.

Only present for MDEntryType=2.

Value Description

U ExchangeLast

R OpeningPrice

AX HighPrice

AY LowPrice

AJ OfficialClosingPrice

AW LastAuctionPrice

k Out of sequence

AN PreviousClosePrice

28819 > MDGapIndicator N uInt32 Reserved for future use.

28820 > AggressorTimestamp N timestamp Entry time of the incoming order that

INDIAINX Market & Reference Data Interfaces Manual V1.1

111

Tag Field Name Req’d Data
Type

Description

triggered the trade.

Only present for MDEntryType=2.

28731 > AggressorSide N Aggressor-

Side

(enum)

Side of the incoming order, which

created the trade.

Only present for MDEntryType=2.

Value Description

1 Buy

2 Sell

28821 > NumberOfBuyOrders N uInt32 Number of buy orders involved in this

trade.

Only present for MDEntryType=2.

28822 > NumberOfSellOrders N uInt32 Number of sell orders involved in this

trade.

Only present for MDEntryType=2.

278 > MDEntryID N uInt32 Represents the match step ID. This field

is unique together with

MarketSegmentID.

Only present for MDEntryType = 2.

<TradeEntryGrp> (optional) group ends

<MDIncGrp> sequence ends

__

30 The values 1, 2, 12, 55, 1000, 1001,1002 are OTC related and part of the Extended Reference & Market Data Service.

11.3.3 Product state change message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

The product state change message provides permanent updates on the trading state for a particular

product.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y string

Value Description

h TradingSessionStatus

INDIAINX Market & Reference Data Interfaces Manual V1.1

112

Tag Field Name Req’d Data
Type

Description

34 MsgSeqNum N uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

336 TradingSessionID Y Trading-

SessionID

(enum)

Value Description

1 Day

3 Morning

5 Evening

7 Holiday

625 TradingSessionSubID Y Trading-

Session-

SubID

(enum)

Value Description

1 PreTrading

3 Trading

4 Closing

5 PostTrading

6 PostClosing

9 Quiescent

340 TradSesStatus Y TradSes-

Status

(enum)

Value Description

1 Halted

2 Open

3 Closed

28828 FastMarketIndicator Y Fast-

Market-

Indicator

(enum)

Indicates if product is in state "Fast

Market".

Value Description

0 No

1 Yes

60 TransactTime Y timestamp

11.3.4 Mass instrument state change message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

INDIAINX Market & Reference Data Interfaces Manual V1.1

113

The mass instrument state change message provides the state information for all instruments of a

certain instrument type within a product. Where not all indicated instruments are affected by the new

state, the exception list (SecurityTradingStatus (326)) is populated with one entry for each such

instrument.

Under Fast Market conditions, this message is sent with the FastMarketIndicator (28828) set but the

actual state information may not have changed and is simply a re-statement of the previous

information.

A state change affecting a single instrument (such as an intraday expiration) does not trigger a mass

Instrument state change.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y string

Value Description

CO SecurityMassStatus

34 MsgSeqNum N uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

1544 InstrumentScopeProduct-

Complex

Y Instrument-

Scope-

Product-

Complex

(enum)

Instrument type of affected

instruments.

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

1679 SecurityMassTradingStatus Y Security-

Mass-

Trading-

Status

(enum)

Value Description

200 Closed

201 Restricted

202 Book

203 Continuous

204 OpeningAuction

205 OpeningAuctionFreeze

206 IntradayAuction

207 IntradayAuctionFreeze

INDIAINX Market & Reference Data Interfaces Manual V1.1

114

Tag Field Name Req’d Data
Type

Description

208 CircuitBreakerAuction

209 CircuitBreakerAuctionFreeze

210 ClosingAuction

211 ClosingAuctionFreeze

28828 FastMarketIndicator Y Fast-

Market-

Indicator

(enum)

Indicates if product is in state "Fast

Market". This indicator refers to a

product but is provided on instrument

level.

Value Description

0 No

1 Yes

60 TransactTime Y timestamp Time when request was processed by

the matcher (nanoseconds).

<SecMassStatGrp> sequence starts

146 NoRelatedSym N length

48 > SecurityID Y Int64 Instrument identifier, e.g. "8852".

22 > SecurityIDSource Y string

Value Description

M Marketplace-assigned

Identifier

965 > SecurityStatus Y Security-

Status

(enum)

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

10 Published

326 > SecurityTradingStatus Y Security-

Trading-

Status

(enum)

Value Description

200 Closed

201 Restricted

202 Book

INDIAINX Market & Reference Data Interfaces Manual V1.1

115

Tag Field Name Req’d Data
Type

Description

203 Continuous

204 OpeningAuction

205 OpeningAuctionFreeze

206 IntradayAuction

207 IntradayAuctionFreeze

208 CircuitBreakerAuction

209 CircuitBreakerAuctionFreeze

210 ClosingAuction

211 ClosingAuctionFreeze

<SecMassStatGrp> sequence ends

11.3.5 Instrument state change message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

The instrument state change message provides state information for a single instrument. It also informs

participants about intraday expirations of instruments. In that case the field SecurityStatus (965) is set

to“Expired”.

Tag Field Name Req’d Data
Type

Description

35 MsgType Y String

Value Description

f SecurityStatus

34 MsgSeqNum N uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

1300 MarketSegmentID Y uInt32 Product identifier, e.g. "89".

48 > SecurityID Y Int64 Instrument identifier, e.g. "8852".

22 > SecurityIDSource Y string

Value Description

M Marketplace assigned

Identifier

965 > SecurityStatus Y Security-

Status

INDIAINX Market & Reference Data Interfaces Manual V1.1

116

Tag Field Name Req’d Data
Type

Description

(enum)

Value Description

1 Active

2 Inactive

4 Expired

9 Suspended

10 Published

326 > SecurityTradingStatus Y Security-

Trading-

Status

(enum)

Value Description

200 Closed

201 Restricted

202 Book

203 Continuous

204 OpeningAuction

205 OpeningAuctionFreeze

206 IntradayAuction

207 IntradayAuctionFreeze

208 CircuitBreakerAuction

209 CircuitBreakerAuctionFreeze

210 ClosingAuction

211 ClosingAuctionFreeze

28828 FastMarketIndicator Y Fast-

Market-

Indicator

(enum)

Indicates if product is in state "Fast

Market". This indicator refers to a

product but is provided on instrument

level.

Value Description

0 No

1 Yes

60 TransactTime Y timestamp Time when request was processed by

the matcher (nanoseconds).

11.3.6 Complex instrument update message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

This message provides information for new or deleted complex instruments. This message has a similar

structure as the instrument incremental message described in section 11.2.3.

INDIAINX Market & Reference Data Interfaces Manual V1.1

117

Tag Field Name Req’
d

Data Type Description

35 MsgType Y string

Value Description

BP SecurityDefinitionUpdateRep

ort

34 MsgSeqNum N uInt32 The sequence number is incremented

per product across all message types on

a particular feed.

49 SenderCompID Y uInt32 Unique id of a sender.

980 SecurityUpdateActio

n

Y string

Value Description

A Add

48 SecurityID Y Int64 The instrument identifier uniquely

identifies an instrument,

e.g.72057800196358145.

22 SecurityIDSource Y String

Value Description

M Marketplace-assigned

identifier

107 SecurityDesc Y string The format depends on the type of

instrument:

Standard options strategies:

PROD.O.YYMMDD.IST.SEQ-NO Non-

standard options strategies:

PROD.N.YYMMDD.SEQ-NO Options

volatility strategies:

PROD.V.YYMMDD.IST.SEQ-NO Future

spreads: PROD.S.MONYY.MONYY

167 SecurityType Y Security- Type

(enum)

Type of security

Value Description

MLEG Complex Instrument

762 SecuritySubType N uInt32 Standard strategy type for complex

instruments, e.g. BER-C.

The mapping of strategy types with the

corresponding integer value is

published in the file “Instrument

INDIAINX Market & Reference Data Interfaces Manual V1.1

118

Subtype Tables” on the INDIAINX

website

1227 ProductComplex Y Product- Complex

(enum)

Type of instrument

Value Description

1 SimpleInstrument

2 StandardOptionStrategy

3 NonStandardOptionStrategy

4 VolatilityStrategy

5 FuturesSpread

<InstrmtLegGrp> sequence starts

555 NoLegs N length

602 > LegSecurityID Y uInt64 Instrument identifier of the leg security.

603 >

LegSecurityIDSource

Y String

Value Description

M Marketplace assigned

identifier

623 > LegRatioQty N uInt32 The ratio of quantity for this individual

leg relative to the entire multileg

security.

624 > LegSide Y LegSide

(enum)

Value Description

1 Buy

2 Sell

566 > LegPrice N decimal Price for the leg instrument. Used for

the underlying leg of a Volatility

Strategy.

<InstrmtLegGrp> sequence ends

<MarketSegmentGrp> sequence starts

1310 >

NoMarketSegments

N length Always “1”.

1300 > MarketSegmentID Y uInt32 Product identifier, e.g. 89.

1144 >

ImpliedMarketIndica

tor

N Implied- Market-

Indicator (enum)

Matching method

Value Description

0 NotImplied

3 BothImpliedInAndImpliedOut

INDIAINX Market & Reference Data Interfaces Manual V1.1

119

<MarketSegmentGrp> sequence ends

60 TransactTime N timestamp Creation time of complex instruments.

This field is empty for dele- tions of

complex instruments.

11.3.7 Index change message

Delivered on: INDIAINX EMDI incremental feed, INDIAINX MDI data feed

This message provides information for the change in the index value for the indices. The message is

delivered in the equity multicast stream only. The message is complete each time it is delivered and thus

does not require recovery.

Tag Field Name Req’d Data Type Description

35 MsgType Y String Type of message

Value Description

I Index broadcast

<IDXGrp> Sequence Starts

30621 NoOfEntries Y length No. of entries of indices

30622 > Divisor N uInt32 Divisor for received index related values

(default value = 100)

30623 > Indexcode Y uInt32 Index code. The Index code and the

corresponding index name are published

in the section 14.4

30624 > IndexHigh Y uInt32 Index high value for the day.

30625 > IndexLow Y uInt32 Index low value for the day.

30626 > IndexOpen Y uInt32 Index open value for the day.

30627 > PrevIndexClose Y uInt32 Index previous close value.

30628 > IndexClose Y uInt32 Index close value for the day.

30629 > IndexValue Y uInt32 Current Index value.

<IDXGrp> Sequence Ends

Data files

INDIAINX Market & Reference Data Interfaces Manual V1.1

120

11.3.8 Reference data from file (INDIAINX RDF)

As an alternative to the reference data feed, participants can receive reference data in file format. This

provision is made especially for bandwidth conscious users who want to prevent an overload of their

line capacity caused by joining the reference data feed.

For details regarding FIXML Schema design rules please refer to the document Version 5.0 Service Pack

2 (with Errata 20110818) available under www.fixprotocol.org > Technical / Specifications.

As per the FIXML specification, INDIAINX RDF field names are different from the INDIAINX RDI field

names. A mapping table between the fields can be found in section 14.3, FIXML mapping table.

The reference data files can be received via the Common Report Engine as described in the "Common

Report Engine User Guide".

Similar to the INDIAINX RDI, the INDIAINX RDF mechanism operates on a snapshot plus incremental

basis.

The initial file (“snapshot”) is created around 6:00 IST and contains all of the instruments defined on the

exchange at the beginning of the business day.

An incremental file is created up to every five minutes thereafter and contains the creation and deletion

events for complex instruments in that period. Each of these incremental files must be applied to the

initial file (the “snapshot”).

If there have been no changes in a given five minute interval, no file is created (i.e. Empty files are not

created).

Other options to receive intraday created complex instruments are described in section 9.2.8, Use case

6: Chronological order of messages for complex instrument creation.

11.3.9 File name format of the reference data files

The Reference Data files are provided in FIXML format. Product reference data and instrument

reference data are provided in one file. The file format of the Start-Of-Day and intraday files look as

follows:

Content File Name

Start-Of-Day [@@][report name][member][businessdate][mic1][mic2][fileset identifier][nnn].XML

INDIAINX Market & Reference Data Interfaces Manual V1.1

121

file

Intraday

updates

[@@][report name][member][business date][mic1][mic2][file set

identifier][nnn].XML

 Table 43: Format of the reference data files

With:

@@ (length 2): environment number, i.e. ’90’ for production and 95 for simulation report name (length

8): always ’FILRDF01’

Member id (length 5): always ’PUBLI’

Business date (length 8): format ’YYYYMMDD’

mic1 (length 4): mic code, always XEUR for INDIAINX

mic2 (length 4): mic code, always XEEE for EEX

File set identifier (length 5): remains constant for all files belonging to the same set

nnn (length 3): sequence number 000-999

Example for reference data files in simulation:

Start-Of-Day file for INDIAINX: 95FILRDF01PUBLI20120815XEURXEEECZA80000.XML

First intraday updated file for INDIAINX: 95FILRDF01PUBLI20120815XEURXEEECZA80001.XML second

intraday updated file for INDIAINX: 95FILRDF01PUBLI20120815XEURXEEECZA80002.XML

...

11.3.10 Reference data file on the next business day

Complex instruments which still exist on the next business day and which have been sent as intraday file

updates on the previous day are incorporated into the Start-Of-Day file on the next day.

11.3.11 Reference data file after a failover or restart of INDIAINX RDI

The file set identifier changes after a restart or failover of the INDIAINX RDI. The file set identifier always

lexically increments within a day, allowing for easy identification of the most recently created set.

During a failover or restart, the application must detect the creation of a new file set and rebuild its

reference data based on the new file set.

Example:

Start-Of-Day file after the failover: 95FILRDF01PUBLI20120815XEURXEEECZLC0000.XML

First intraday updated file after the failover: 95FILRDF01PUBLI20120815XEURXEEECZLC0001.XML

Second intraday updated file after the failover: 95FILRDF01PUBLI20120815XEURXEEECZLC0002.XML

Note: The file name always contains 2 MIC codes because it holds products from two markets.

INDIAINX Market & Reference Data Interfaces Manual V1.1

122

If INDIAINX RDI fails over a new initial reference file is generated with a new file set identifier. This file

contains any complex instruments, already created and deleted during the day, i.e. the entire history.

If INDIAINX RDI needs to be restarted by the exchange a new initial reference file is generated with a

new file set identifier. This file contains the currently existing complex instruments but not the entire

history of creations and deletions.

11.3.12 What receiving applications need to do

Applications using a sftp process need to process the following loop:

1. Find the newest Start-Of-Day file.

2. Apply all updates newer than the Start-Of-Day file.

3. Detect the creation of a new file set.

INDIAINX Market & Reference Data Interfaces Manual V1.1

123

12 Multicast addresses

The reference information provided by INDIAINX RDI contains the respective multicast channel

information

(i.e. multicast addresses and port numbers) for all available products.

12.1 Reference data snapshot feed

Simulation Service A Service B

Multicast IP 226.1.0.133 226.1.0.135

Port 13433 13435

Production Service A Service B

Multicast IP 225.0.0.5 225.0.0.6

Port 16905 16906

Table 44: Multicast addresses and ports for the reference data snapshot feeds

12.2 Reference data incremental feed

Simulation Service A Service B

Multicast IP
 226.1.0.134 226.1.0.132

Port 13434 13432

Production Service A Service B

Multicast IP 225.0.0.3 225.0.0.4

Port 16903 16904

Table 45: Multicast addresses and ports for the reference data incremental feed

Environment Table 44: Multicast Table 44: Multicast addresses and ports for the reference data snapshot feeds

12.2 Reference data incremental feed addresses and ports for the reference data snapshot feeds

12.2 Reference data incremental feed Table 44: Multicast addresses and ports for the reference data snapshot

feeds

12.2 Reference data incremental feed

INDIAINX Market & Reference Data Interfaces Manual V1.1

124

13 FAST templates

Two versions for FAST templates are offered:

• FAST templates based on version 1.2

• FAST templates compatible with version 1.1

Participants can either use a decoder which has the new FAST 1.2 feature implemented or use their

existing decoder based on FAST 1.1.

The FAST XML files are provided by INDIAINX in separate files:

• EMDIFastTemplates*.xml for all messages on the EMDI incremental feed.

• EMDSFastTemplates*.xml for all messages on the EMDI snapshot feed.

• MDIFastTemplates*.xml for all messages on the MDI feed.

• RDDFastTemplates*.xml for all messages on the RDI snapshot and incremental feed.

The FAST templates can be downloaded from INDIAINX website at: www.INDIAINXindia.com/nta.aspx

http://www.bseindia.com/nta.aspx

INDIAINX Market & Reference Data Interfaces Manual V1.1

125

14 Appendix

14.1 Example for a XML FAST template

This example refers to chapter 5.3, decoding the FAST-message.

Figure 23: Example for a FAST template with repeating group

INDIAINX Market & Reference Data Interfaces Manual V1.1

126

14.2 Example for determination of the price source

14.2.1 Fully implied (example for 9.3.1, Determination of the price sources)

Precondition: Empty order book.

Action: Buy FDAX Mar 10@100, Sell FDAX Jun 10@98

Result: Fully implied price in future spread, Buy FDAX Mar/Jun 10@2 gets created (implied price is sent).

Rule 1 in section 9.3.1, Determination of the price sources applies.

Tag name

Tag

number

Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1000

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 8875 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 2 Price

271 > MDEntrySize 10 Quantity

346

> NumberOfOrders N/A Number of order/quotes on this

level

1023 > MDPriceLevel N/A empty indicates implied price

273 > MDEntryTime t0 official time of book entry

Table 46: Fully implied

14.2.2 Fully outright on level 1 (example for 9.3.1, Determination of the price sources)

Precondition: Fully implied price in future spread created above.

Action: Buy FDAX Mar/Jun 8@1.5

Result: Fully outright price gets created on price level 1 (Implied price is aINDIAINXnt). No update for
implied is sent as it has already been conveyed (see section 14.2.1). Rule 1 in section 9.3.1,
Determination of the price sources applies.

INDIAINX Market & Reference Data Interfaces Manual V1.1

127

Tag

number

Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1001

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 8875 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 1.5 Price

271 > MDEntrySize 8 Quantity

346

> NumberOfOrders 1 Number of order/quotes on this

level

1023 > MDPriceLevel 1 empty indicates implied price

273 > MDEntryTime t1 official time of book entry

Table 47: Fully outright sent for level 1

14.2.3 Partially implied (example for 9.3.1, Determination of the price sources)

Precondition: Fully implied price in future spread created before (see section 14.2.1):

•fully implied Buy FDAX (Mar/Jun) 10@2

•outright 8@1.5 (see section 14.2.2)

Action: Buy FDAX Mar/Jun 5@2 (new outright price in future spread)

Result: The initially fully implied price becomes partially implied. Rule 2 in section 9.3.1, Determination

of the price sources) applies. The implied price (without price level) is not sent again as it has already

been conveyed (see section 14.2.1).

Tag

number

Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum 1002

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

INDIAINX Market & Reference Data Interfaces Manual V1.1

128

Tag

number

Tag name Value Description

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 8875 Instrument

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 2 Price

271 > MDEntrySize 5 Quantity

 346 > NumberOfOrders 1 Number of order/quotes on this

level

1023 > MDPriceLevel 1 empty indicates implied price

273 > MDEntryTime t2 official time of book entry

Table 48: Partially Implied

14.2.4 Several fully implied orders at Best Market (example for 9.3, General order book rules and

mechanics)

Precondition: Fully implied Buy FDAX Sep 100@117

Action: Buy FDAX Jun 100@118, Sell FDAX Jun/Sep 100@1.

This creates an implied for Buy FDAX Sep at 100@ (118-1) = 100@117.

Result: The reported quantity is the sum of the quantities for the two implied orders (100@117) at the

same price, i.e. 200@117 is reported.

Rule 1 in section 9.3.1, Determination of the price sources applies.

Tag

number

Tag name Value Description

35 MsgType X MarketDataIncrementalRefresh

34 MsgSeqNum

49 SenderCompID 75 Unique id of a sender

1300 MarketSegmentID 89 Product

268 NoMDEntries 1

279 > MDUpdateAction 0 New

269 > MDEntryType 0 Bid

48 > SecurityID 7510 Instrument

INDIAINX Market & Reference Data Interfaces Manual V1.1

129

Tag

number

Tag name Value Description

22 > SecurityIDSource M Marketplace-assigned identifier

270 > MDEntryPx 117 Price

271 > MDEntrySize 200 Quantity

 346 > NumberOfOrders N/A Number of order/quotes on this

level

1023 > MDPriceLevel N/A empty indicates implied price

273 > MDEntryTime t3 official time of book entry

Table 49: Quantities are added for two or more fully implied orders at the same price.

INDIAINX Market & Reference Data Interfaces Manual V1.1

130

14.3 FIXML mapping table

The following table provides a mapping between FIXML and FIX fields. The mapping table belongs to

chapter 11.4.1, Reference data from file (INDIAINX RDF). SecDef refers to the instrument snapshot

message, SecDefUpd refers to instrument incremental message and MktDef refers to the product

snapshot message.

The initial file (“snapshot”) includes all three message types while the incremental file contains only the

SecDefUpd message.

FIXML fields of the INDIAINX RDF occur in the same sequence as FIX fields of the INDIAINX RDI.

The market data report message is not used in the INDIAINX RDF because the start and end of the files

coincides with the MDReportEvent values.

Example:

MDReportEvent = 1 = “StartOfReferenceData” = Begin of file

MDReportEvent = 2 = “EndOfReferenceData” = End of File

FIXML Field Name FIX Field Name FIX

Tag/Gro

up

Repeati

ng

FIX Messages

AID SecurityAlt Group Y SecDef, SecDefUpd

AltID SecurityAltID 455 SecDef, SecDefUpd

AltIDSrc SecurityAltIDSource 456 SecDef, SecDefUpd

BaseTrdgRules BaseTradingRules Group N MktDef, SecDef,
SecDefUpd

BlckTrdElig BlockTradeEligibilityIndicator 28837 SecDef, SecDefUpd

Ccy Currency 15 MktDef

CntrctGenNum

ContractGenerationNumber 25100 SecDef, SecDefUpd

Desc SecurityDesc 107 SecDef, SecDefUpd

Dt EventDate 866 SecDef, SecDefUpd

EndPxRng EndPriceRange 28813 MktDef

EndTickPxRng EndTickPriceRange 1207 MktDef

EventTyp EventType 865 SecDef, SecDefUpd

Evnt Events Group Y SecDef, SecDefUpd

Exch SecurityExchange 207 SecDef, SecDefUpd

ExerStyle ExerciseStyle 1194 SecDef, SecDefUpd

FastMktInd FastMarketIndicator 28828 MktDef

FastMktPctg FastMarketPercentage 28833 MktDef

FlexProdElig FlexProductEligibilityIndicator 1242 MktDef

INDIAINX Market & Reference Data Interfaces Manual V1.1

131

FIXML Field Name FIX Field Name FIX

Tag/Gro

up

Repeati

ng

FIX Messages

FlexProdEligCmplx FlexProductEligibilityComplex 28831 MktDef

FlexProdEligs FlexRules Group Y MktDef

ID LegSecurityID 602 SecDef, SecDefUpd

ID SecurityID 48 SecDef, SecDefUpd

ImpldMktInd ImpliedMarketIndicator 1144 SecDef, SecDefUpd

Instrmt Instrument Group N SecDef, SecDefUpd

LEPOInd LowExercisePriceOptionIndica
tor

28838 SecDef, SecDefUpd

Leg InstrmtLegGrp Group Y SecDef, SecDefUpd

MDBkTyp MDBookType 1021 MktDef

MDFeedLineID1 MDPrimaryFeedLineID 28590 MktDef

MDFeedLineID2 MDSecondaryFeedLineID 28592 MktDef

MDFeedLineSubID1 MDPrimaryFeedLineSubID 28591 MktDef

MDFeedLineSubID2 MDSecondaryFeedLineSubID 28593 MktDef

MDFeedTyp MDFeedType 1022 MktDef

MDFeedTyps Feeds Group Y MktDef

MMY MaturityMonthYear 200 SecDef, SecDefUpd

MarketSegmentDesc MarketSegmentDesc 1396 MktDef

MatDt MaturityDate 541 SecDef, SecDefUpd

MinBidSz MinBidSize 647 MktDef

MinOfrSz MinOfferSize 648 MktDef

MinPxIncr MinPriceIncrement 969 SecDef, SecDefUpd

MinPxIncrAmt MinPriceIncrementAmount

1146 SecDef, SecDefUpd

MktDepth MarketDepth 264 MktDef

MktID MarketID 1301 MktDef

MktSeg MarketSegment 7703 MktDef

MktSegGrp MarketSegmentGrp Group Y SecDef, SecDefUpd

MktSegID MarketSegmentID 1300 MktDef ,SecDef,
SecDefUpd

MktSegStat MarketSegmentStatus 28599 MktDef

MlegModel MultilegModel 1377 SecDef, SecDefUpd

MtchAlgo MatchAlgorithm 1142 MktDef

MtchRuleProdCmplx MatchRuleProductComplex 28824 MktDef

MtchRules MatchRules Group Y MktDef

MtchTyp MatchType 574 MktDef

Mult ContractMultiplier 231 SecDef, SecDefUpd

OptAt OptAttribute 206 SecDef, SecDefUpd

OrigStrkPx OrigStrikePrice 28832 SecDef, SecDefUpd

ParentMktSegmID ParentMktSegmID 1325 1325 MktDef

INDIAINX Market & Reference Data Interfaces Manual V1.1

132

FIXML Field Name FIX Field Name FIX

Tag/Gro

up

Repeati

ng

FIX Messages

MktDef

PartID PartitionID 5948 MktDef

PrevAdjOpenInt PrevAdjustedOpenInterest 28816 SecDef, SecDefUpd

PrevClsPx32 PrevClosePx32 140 SecDef, SecDefUpd

PrevSettlPx PrevSettlPx 28818 SecDef, SecDefUpd

PrevUnadjOpenInt PrevUnadjustedOpenInterest 28817 SecDef, SecDefUpd

ProdCmplx ProductComplex 1227 SecDef, SecDefUpd

PutCall PutOrCall 201 SecDef, SecDefUpd

Px LegPrice 566 SecDef, SecDefUpd

PxPrcsn PricePrecision 28835 SecDef, SecDefUpd

PxRngPctg PriceRangePercentage 28809 MktDef

PxRngProdCmplx PriceRangeProductComplex 28810 MktDef

PxRngRuleID PriceRangeRuleID 28806 MktDef ,SecDef,
SecDefUpd

PxRngRules PriceRangeRules Group Y MktDef ,SecDef,
SecDefUpd

PxRngValu PriceRangeValue 28808 MktDef

QtSideInd QuoteSideIndicator 28814 MktDef

QuotSizeRules QuoteSizeRules Group Y MktDef

RatioQty LegRatioQty 623 SecDef, SecDefUpd

RefMktSegID RefMarketSegmentID 28700 MktDef

SecTrdgRules SecurityTradingRules Group N SecDef, SecDefUpd

SecTyp SecurityType 167 SecDef, SecDefUpd

SettlMeth SettlMethod 1193 SecDef, SecDefUpd

SettlSubMeth SettlSubMethod 28834 SecDef, SecDefUpd

Side LegSide 624 SecDef, SecDefUpd

Src LegSecurityIDSource 603 SecDef, SecDefUpd

Src SecurityIDSource 22 SecDef, SecDefUpd

StartPxRng StartPriceRange 28812 MktDef

StartTickPxRng StartTickPriceRange 1206 MktDef

Status SecurityStatus 965 SecDef, SecDefUpd

StrkPx StrikePrice 202 SecDef, SecDefUpd

StrkPxPrcsn StrikePricePrecision 28836 SecDef, SecDefUpd

SubTyp SubTyp SecuritySubType 762 SecDef, SecDefUpd

Sym MarketSegmentSymbol 7177 MktDef

TickIncr TickIncrement 1208 MktDef

TickRuleProdCmplx TickRuleProductComplex 28823 MktDef

TickRules TickRules Group Y MktDef

TrdDt TradeDate 75 MktDef

TxnTm TransactTime 60 SecDef, SecDefUpd

INDIAINX Market & Reference Data Interfaces Manual V1.1

133

FIXML Field Name FIX Field Name FIX

Tag/Gro

up

Repeati

ng

FIX Messages

USFirmFlag USFirmFlag 9543 MktDef

UndID UnderlyingID 5336 MktDef

UndLastPx UnderlyingLastPx 9939 MktDef

UndSec UnderlyingSecurity 6426 MktDef

UpdActn SecurityUpdateAction 980 SecDefUpd

ValMeth ValuationMethod 1197 SecDef, SecDefUpd

14.4 Index Code and Mapping Table

Index
Code

Index Name Description

1 SENSEX INDIAINX sensitive index

2 INDIAINX100 INDIAINX 100 scrips index

3 INDIAINX200 INDIAINX 200 scrips index

4 INDIAINX500 INDIAINX 500 scrips index

34 INDIAINX IT S&P INDIAINX Information Technology

32 INDIAINXFMC S&P INDIAINX Fast Moving Consumer Goods

7 INDIAINX CG INDIAINX Capital Goods Index

8 INDIAINX CD INDIAINX Consumer Durables index

33 INDIAINX HC S&P INDIAINX Healthcare

10 INDIAINX PSU INDIAINX Public Sector Unit Index

11 TECK INDIAINX Teck Index

12 BANKEX INDIAINX Bank Index

13 AUTO INDIAINX AUTO index

14 METAL INDIAINX METAL index

15 OILGAS INDIAINX OIL&GAS index

30 MIDCAP S&P INDIAINX MidCap

31 SMLCAP S&P INDIAINX SmallCap

18 DOL30 Dollex-30

19 DOL100 Dollex-100

20 DOL200 Dollex-200

21 REALTY INDIAINX Realty Index

22 POWER INDIAINX Power Index

23 INDIAINXIPO INDIAINX IPO Index

25 GREENX INDIAINX GREENEX

INDIAINX Market & Reference Data Interfaces Manual V1.1

134

26 CARBON INDIAINX CARBON

27 SMEIPO INDIAINX SME IPO

28 INFRA S&P INDIAINX India Infrastructure Index

29 CPSE S&P INDIAINX CPSE

35 MFG S&P INDIAINX MFG

36 ALLCAP S&P INDIAINX AllCap

37 BASMTR S&P INDIAINX Basic Matrl

38 CDGS S&P INDIAINX Cons Discr

39 ENERGY S&P INDIAINX Energy

40 FIN S&P INDIAINX Finance

41 INDSTR S&P INDIAINX Industrials

42 LRGCAP S&P INDIAINX LargeCap

43 MIDSEL S&P INDIAINX MidCap Sel

44 SMLSEL S&P INDIAINX SmallCapSel

45 TELCOM S&P INDIAINX Telecom

46 UTILS S&P INDIAINX Utilities

15 Change log

 Section Description

11.3.1 Depth Snapshot Message

11.3.2 Depth Incremental Message

New Enumeration added for the field

MDEntryType(269)

